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Abstract—Recent advances in the areas of Internet of Things
(IoT), Big Data, and Machine Learning have contributed to
the rise of a growing number of complex applications. These
applications will be data-intensive, delay-sensitive, and real-time
as smart devices prevail more in our daily life. Ensuring Quality
of Service (QoS) for delay-sensitive applications is a must, and fog
computing is seen as one of the primary enablers for satisfying
such tight QoS requirements, as it puts compute, storage, and
networking resources closer to the user.

In this paper, we first introduce FOGPLAN, a framework
for QoS-aware Dynamic Fog Service Provisioning (QDFSP).
QDFSP concerns the dynamic deployment of application services
on fog nodes, or the release of application services that have
previously been deployed on fog nodes, in order to meet low
latency and QoS requirements of applications while minimizing
cost. FOGPLAN framework is practical and operates with no
assumptions and minimal information about IoT nodes. Next, we
present a possible formulation (as an optimization problem) and
two efficient greedy algorithms for addressing the QDFSP at one
instance of time. Finally, the FOGPLAN framework is evaluated
using a simulation based on real-world traffic traces.

Index Terms—Cloud Computing Services, Fog Computing,
Internet of Things Networks, Multi-access Edge Computing, Or-
chestration, Quality of Experience-centric Management, Quality
of Service, Service Management

I. INTRODUCTION

The Internet of Things (IoT) is shaping the future of
connectivity, processing, and reachability. In IoT, every “thing”
is connected to the Internet, including sensors, mobile phones,
cameras, computing devices, and actuators. IoT is proliferating
exponentially, and IoT devices are expected to generate mas-
sive amounts of data in a short time, with such data potentially
requiring immediate processing.

Many IoT applications, such as augmented reality, con-
nected and autonomous cars, drones, industrial robotics,
surveillance, and real-time manufacturing have strict latency
requirements, in some cases below 10 ms [1][2]. These appli-
cations cannot tolerate the large and unpredictable latency of
the cloud when cloud resources are deployed far from where
the application data is generated. Fog computing [3], edge
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computing [4], and MEC [5] have been recently proposed to
bring low latency and reduced bandwidth to IoT networks, by
locating the compute, storage, and networking resources closer
to the users. Fog can decrease latency, bandwidth usage, and
costs, provide contextual location awareness, and enhance QoS
for delay-sensitive applications, especially in emerging areas
such as IoT, Internet of Energy, Smart City, Industry 4.0, and
big data streaming [6][7].

Certain IoT applications are bursty in resource usage, both
in space and time dimensions. For instance, in situation
awareness applications, the cameras in the vicinity of an
accident generate more requests than the cameras in other parts
of the highway (space), while security motion sensors generate
more traffic when there is suspicious activity in the area (time).
The resource usage of the delay-sensitive fog applications may
be dynamic in time and space, similar to that of situational
awareness applications [8].

An IoT application may be composed of several services
that are essentially the components of the application and
can run in different locations. Such services are normally
implemented as containers, virtual machines (VMs), or uniker-
nels. For instance, an application may have services such
as authentication, firewall, caching, and encryption. Some
application services are delay-sensitive and have tight delay
thresholds, and may need to run closer to the users/data
sources (e.g. caching), for instance at the edge of the network
or on fog computing devices. On the other hand, some ap-
plication services are delay-tolerant and have high availability
requirements, and may be deployed farther from the users/data
sources along the fog-to-cloud continuum or in the cloud (e.g.
authentication). We label these fog-capable IoT services that
could run on the fog computing devices or the cloud servers
as fog services.

Placement of such services on either fog computing devices
(fog nodes) or cloud servers has a significant impact on
network utilization and end-to-end delay. Although cloud com-
puting is seen as the dominant solution for dynamic resource
usage patterns, it is not able to satisfy the ultra-low latency
requirements of specific IoT applications, provide location-
aware services, or scale to the magnitude of the data that IoT
applications produce [2][9]. This is also evident by the recent
edge computing frameworks (Microsoft Azure IoT Edge [10],
Google Cloud IoT Edge [11], and Amazon AWS Greengrass
[12]) introduced by major cloud computing companies to bring
their cloud services closer to the edge, on the IoT devices.

Fog services could be deployed on the fog nodes to provide
low and predictable latency, or in the cloud to provide high
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availability with lower deployment cost. The placement of the
fog services could be accomplished in a static manner (e.g.
with the goal of minimizing the total cost while satisfying
the corresponding latency constraints). Nevertheless, since the
resource usage pattern of certain IoT application is dynamic
and changing over time, a static placement would not be able
to adapt to such changes. Thus, fog services should be placed
dynamically in order to address the bursty resource usage
patterns of the overlaying fog-based IoT applications. This is
the essence of dynamic placement of fog services, which is to
dynamically deploy and release IoT services on fog computing
devices or cloud servers to minimize the resource cost and
meet the latency and QoS constraints of the IoT applications.

In this paper, we introduce FOGPLAN: A Lightweight QoS-
aware Dynamic Fog Service Provisioning Framework. In the
next section, we discuss the related research studies and
discuss how the QDFSP problem fits in the IoT-fog-cloud
architecture. We then present a possible formulation of an
Integer Nonlinear Programming (INLP) task to address the
QDFSP problem at one time instance (Section III-G), propose
two practical greedy algorithms for dynamically adjusting
service placement (Section V), and evaluate the algorithms
numerically1 (Section VI). We present conclusions and sug-
gestions for future research in Section VII.

II. RELATED WORK

Some frameworks are conceptually similar to FOGPLAN but
with goals that differ from the goal of meeting the ultra-
low latency requirements of IoT applications, that is the goal
of FOGPLAN. Service migration in edge clouds in response
to user movement [13], network workload performance [14],
and for reducing file system transfer size [15]; and VM
migration and handoff in edge clouds [16][17][18][19][20]
are the most notable among these frameworks. Comparably,
the studies [21][22][23][24][8] propose deployment platforms
and programming models for service provisioning in the fog.
Similarly, a framework and software implementation for dy-
namic service deployment based on availability and processing
resources of edge clouds are presented in [25]. To model
resource cost in edge networks for fog service provisioning,
the authors in [26] propose a model for resource contract
establishment between edge infrastructure provider and cloud
service providers based on auctioning.

Some studies proposed frameworks for fog service provi-
sioning for specific use cases and applications. The authors
in [27] propose an edge cloud architecture for gaming that
places local view change updates and frame rendering on
edge clouds, and global game state updates on the central
cloud. They further propose a service placement algorithm for
multiplayer online games that periodically makes placement
decisions, based on QoS, mutual impact among players, and
player mobility patterns. MigCEP [28] is proposed for place-
ment and migration of operators in real-time event processing
applications over the fog and the cloud. A real-time event

1The QoS in this paper is modeled in terms of latency, namely the IoT
service delay and latency threshold.
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Fig. 1. General architecture for IoT-fog-cloud. The bottom logical layer
(yellow) is the things layer, where IoT devices lie. The top logical layer
(blue) is the cloud layer. Fog is the continuum between things and the cloud
layer, and it is not only limited to the edge. (Edge computing occurs at the
edge layer (green), while fog computing can occur anywhere along the IoT
to cloud).

processing application is modeled as a set of operators and
MigCEP places the operators based on the mobility of users.

Closely related to the FOGPLAN framework are schemes
for dynamic resource reconfiguration in fog computing. The
authors in [29] implement a fog computing platform that dy-
namically pushes software modules to the fog nodes, whereas
the study [30] provides theoretical foundations and algorithms
for storage- and cost-aware dynamic service provisioning
on edge clouds. The proposed frameworks, however, are
oblivious to QoS and latency, as opposed to the proposed
FOGPLAN framework.

Another related and similar framework to FOGPLAN is
service placement in distributed and micro clouds [31][32][33]
and virtual network embedding [34]. Nevertheless, ultra-low
delay requirements and delay violation metrics are not con-
sidered in these studies, as opposed to FOGPLAN. The study
in [35] proposes a framework for the fog service provisioning
problem. The proposed framework, however, does not consider
the overhead of the introduced components on IoT nodes and
assumes that IoT nodes run fog software and a virtualization
technology. Similar to fog service provisioning, the work in
[36] introduces IoT application provisioning by proposing
a service-oriented mobile platform. Despite the substantial
contributions in the studies mentioned, they cannot be directly
applied to the dynamic provisioning of delay-sensitive fog-
capable IoT applications. Firstly, FOGPLAN is not application-
specific and is designed for general fog-capable IoT applica-
tions. Secondly, it does not require any knowledge of user
mobility patterns or status/specifications of the IoT devices.
Moreover, FOGPLAN does not make any assumptions about
IoT devices and their supported software capabilities (e.g.,
virtualization). The FOGPLAN framework is QoS-aware and
considers ultra-low delay requirements of IoT applications
and customer delay violation metrics. Finally, FOGPLAN is
lightweight and designed to scale to the large magnitude of
IoT networks. Each of the discussed studies considers some
of the above features, whereas FOGPLAN considers all of them
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collectively, to fill the gap in the literature for a lightweight
framework for dynamic provisioning of delay-sensitive fog-
capable IoT applications.

A. Summary of Contributions

The contributions of this paper include: (1) FOGPLAN, a
novel, lightweight, and practical framework for QoS-aware
dynamic provisioning (deploying and releasing) of fog services
with no assumptions and minimal information about IoT
nodes, (2) a formulation of an optimization problem for the
QDFSP problem at one time instance, (3) two efficient greedy
algorithms (one with regards to on QoS and one with regards
to cost) are proposed for addressing the QDFSP problem pe-
riodically, and (4) evaluation based on real-world traffic traces
to verify the applicability and scalability of the FOGPLAN.

III. FOGPLAN FRAMEWORK

The main goal of FOGPLAN is to provide better QoS,
in terms of reduced IoT service delay and reduced fog-to-
cloud bandwidth usage, while minimizing the resource usage
of the Fog Service Provider (FSP). Specifically, the QoS
improvement is useful for low latency and bandwidth-hungry
applications such as real-time data analytics, augmented and
virtual reality, fog-based machine learning, ultra-low latency
industrial control, or big data streaming. FOGPLAN is a
framework for the QDFSP problem, which is to dynamically
provision (deploy or release) IoT services on the fog nodes or
cloud servers, in order to comply with the QoS terms (delay
threshold, penalties, etc.) defined as an agreement between the
FSP and its clients, with minimal resource cost for the FSP.

A. IoT-Fog-Cloud Architecture

In this subsection, we discuss the general architecture for
an IoT-fog-cloud system, define fog nodes, show how requests
from IoT devices are handled, and describe the available
communication technologies between nodes in the general IoT-
fog-cloud architecture.

1) Layered Architecture: Fig. 1 shows the general archi-
tecture of IoT-fog-cloud. At the bottom is the things layer,
where IoT devices logically lie. The things layer is sometimes
referred to as the mist layer since it is where mist computing
occurs. Mist computing captures a computing paradigm that
occurs on the connected devices [37]. IoT devices are endpoint
devices such as sensors, actuators, mobile phones, smart
fridges, cameras, smart watches, cameras, and autonomous
cars. The next logical layer is the edge layer, where edge
devices such as WiFi access points, first hop routers and
switches, and base stations are located. Edge computing nor-
mally takes place on the (edge) devices of this layer.

At the top is the cloud layer, where large-scale cloud
servers and well-provisioned data centers are located. The
cloud servers and data centers in the cloud layer are normally
far from the IoT devices. The fog continuum (where fog
computing occurs) fills the computing, storage, and decision
making the gap between the things layer and the cloud layer
[6]. The fog continuum is not only limited to the edge layer

as it includes the edge layer and expands to the cloud.
Fog computing is hierarchical and it provides computing,
networking, storage, and control anywhere from the cloud
layer to the things layer; while, edge computing tends to be
the computing at the edge layer [6][7].

2) Fog Node: We refer to the devices in the fog contin-
uum as fog nodes. Fog nodes provide networking functions,
computation, and storage to the IoT devices in the things
layer and are located closer than cloud servers to the IoT
devices [7]. Fog nodes could host services packaged in the
form of VMs, containers, or unikernels. Fog nodes can be
routers, switches, dedicated servers for fog computing (e.g.
cloudlets), customer premises equipment (CPE) nodes (also
called home gateways), or firewalls [7][38]. The fog nodes can
be either small-scale nodes in a residential environment (e.g.
home gateways), or medium/ high-performance equipment in
an enterprise environment (e.g. routers or aggregation nodes
of a Telco network) [38].

3) Handling Requests in IoT-fog-cloud: IoT nodes send
their requests to the cloud. The IoT requests that are for
traditional cloud-based services are sent directly to the cloud
without any processing in the fog. In this case, the requests
are sent to the cloud and may bypass fog nodes along the path,
but without any fog processing. On the other hand, the IoT
requests that are for fog services will either be processed by
fog nodes, if the corresponding service is deployed on the fog
nodes, or forwarded to the cloud if the service is not deployed
on fog nodes. Fog nodes may also offload requests to other
fog nodes, such as in [39], to balance their workload and to
minimize response delay of the IoT requests.

B. Clients’ QoS Requirements

1) QoS Measure: In this paper, we focus on the average IoT
service delay as the QoS measure of IoT nodes; the average
service delay is compared against a desired service delay
threshold as the QoS requirements. These delay parameters
along with few other metrics (such as penalty cost for delay
violation) are used to model QoS. The service delay is
formulated in section IV-B.

2) Client: In this framework, the client is defined as an
IoT application developer, IoT application owner, or the entity
who owns the IoT nodes and agrees with a level of QoS
requirements with the FSP. When a client signs a contract
with the FSP, the FSP guarantees to provide fog services
(using FOGPLAN) with service delays below a maximum delay
threshold th. The FSP also provides a level of the desired QoS
q, which governs how strict the delay requirements are. For
example, for a given service a, if qa = 99% and tha = 5 ms, it
means that the client requires that the service delay of service
a must be less than 5 ms, 99% of the time. All parameters of
the framework are summarized in Table I.

3) Complying with QoS Requirements: The FSP may own
fog and edge resources, or it may rent them from edge net-
work providers (e.g. AT&T, Nokia, Verizon) or edge resource
owners [26][40][41]. To comply with the QoS terms, one
trivial solution for the FSP is to blindly deploy the particular
service on all the fog nodes close to the client’s IoT nodes.
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Scenario 1: Fog Service Deployment
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Fig. 2. FOGPLAN framework. (Only traffic from IoT to cloud is shown.)

Nevertheless, this is not an efficient solution and it wastes the
available resources, because it over-provisions resources for
that particular service. If the FSP has many clients, it is likely
that it does not have adequate resources on fog nodes for all the
clients’ services. Therefore, the FSP should employ a dynamic
approach (e.g., FOGPLAN) to provision its services, while
minimizing the cost and complying with the QoS requirements
of its clients.

C. Fog Service Controller (FSC)

1) General Architecture: The general architecture of the
system for dynamically provisioning the fog services is shown
in Fig. 2. The aggregated incoming traffic rate of IoT requests
to a fog node is monitored by a traffic monitoring agent,
such as that of a Software Defined Networking (SDN) con-
troller. Commercial SDN controllers such as OpenDayLight
and ONOS have rich traffic monitoring northbound APIs for
monitoring the application-level traffic [42], [43]. The traffic
rate monitoring is done in the Traffic Monitor module.

The “Fog Service Controller” (FSC) is where FOGPLAN is
implemented. Essentially, FSC solves the QDFSP problem
using the monitored incoming traffic rate to the fog nodes and
other parameters to make decisions for deploying or releasing
services. It is assumed that the FSC only manages fog nodes
in a particular geographical location; however, the FSC may
be replicated for different geographical areas.

2) What is Inside?: The FSC has a database (labeled
Service Database) of the application services (e.g. containers)
that the FSP’s clients develop, and also maintains the QoS
parameters of each service (Fig. 2). The FSC uses the Service
Database to deploy required services on the fog nodes. This
is analogous to the container registry [44] of the recently
proposed Microsoft Azure IoT Edge framework. Using QoS
parameters, the FSC can obtain the delay and other parameters
of a service. When the traffic demand for a particular service
increases, the Provision Planner module in the FSC may
deploy a new service on the corresponding fog nodes to reduce
the IoT service delay. On the other hand, if demand for a
particular service is not significant, the Provision Planner may
release the service to save on resource cost. Both the deploy
and the release operations are performed as per the QoS
requirements. For instance, when the traffic demand is low

but the QoS requirement of a service is strict, the service may
not be released.

D. Scalability and Practicality

The FOGPLAN framework is lightweight and practical, and
it operates with no assumptions and with minimal information
about IoT nodes. The only information from IoT nodes that is
required for the purpose of dynamic fog service provisioning
is the aggregated incoming traffic rate of IoT nodes to the fog
nodes (λin

aj). Depending on the definition scope of service de-
lay (to be discussed in Sections IV-B1 and IV-B2), the average
transmission rate r(Ia,j) and propagation delay d(Ia,j) between
the IoT nodes running a service and their corresponding fog
node may also be required. The aggregated traffic rate can be
easily monitored, while the average transmission rate and the
propagation delay can be approximated by round-trip delay,
which can be measured using a simple ping mechanism. Nev-
ertheless, if obtaining average values for r(Ia,j) and d(Ia,j) is
not possible in a scenario, the definition scope of service delay
can be altered (refer to Section IV-B2). Knowing minimal
information about IoT nodes makes our framework practical
and lightweight. Moreover, there are no assumptions about IoT
nodes, namely, if they run any specific fog-related application
or protocol, support virtualization technology, or have specific
hardware characteristics.

E. Application Development and Deployment

The communication of the FSC with other entities can
be encrypted for added security. Also, adequate secure tech-
niques may be used for monitoring IoT traffic. The security
considerations of FOGPLAN are outside the scope of this
paper and are left as future work. When the FSP’s clients
develop new services and push them to the cloud, the services
are automatically pulled into the FSC’s Service Database
(encrypted channel). This ensures that the Service Database
always has the newest version of the services. This deployment
model hides the platform heterogeneity, location of fog nodes,
and the complexities of the migration process of the services
from the application developers. Note that traditional cloud-
based services that do not require the low latency of fog need
not be pulled into the Service Database.

When a service is deployed on a fog node, it advertises
the fog node’s IP address to the participating IoT nodes that
run the application, so that the IoT node’s requests are sent
to the fog node (fog discovery). Another possibility is for the
IoT nodes to discover the new fog service through a service
discovery protocol, or similar to the PathRoute module in [45],
route the requests to fog services by including a URI in the
requests. One can design a fog service discovery protocol as
an extension to FOGPLAN.

F. Fog Node Architecture

1) Monitoring: Monitoring the incoming traffic to fog
nodes is necessary for the operation of FOGPLAN. Fog nodes
may be devices such as switches or routers that already
have monitoring capabilities. If fog nodes do not have mon-
itoring capabilities, they must be either directly connected
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TABLE I
TABLE OF NOTATION

F set of fog nodes
C set of cloud servers
A set of fog services
Ia set of IoT nodes running service a
Φ Fog Service Controller (FSC)
qa desired quality of service for service a; qa ∈ (0, 1)
tha delay threshold for service a

daj
average service delay of IoT nodes served by fog node j for
service a

pa
penalty that FSP must pay per request of service a if delay
requirements are violated by 1% (in dollar per request per %)

τa
time interval between two instances of solving optimization
problem or greedy algorithms for service a (in seconds)

u(s,d) communication cost of link (s, d) per unit bandwidth per sec
r(s,d) transmission rate (bandwidth) of link (s, d)
d(s,d) propagation delay of link (s, d)

CP
j unit cost of process. at fog node j (per million instructions)

C′Pk unit cost of process. at cloud ser. k (per million instructions)
CS

j unit cost of storage at fog node j (per byte per second)
C′Sk unit cost of storage at cloud server k (per byte per second)
LS
a storage size of service a, in bytes

LP
a

required amount of processing for service a per request (in
million instructions per request)

LM
a required amount of memory for service a (in bytes)

λout
aj

rate of dispatched traffic for service a from fog node j to the
associated cloud server (request/second)

λin
aj

incoming traffic rate from IoT nodes to fog node j for
service a (request/second)

λ′inak
incoming traffic rate to cloud server k for service a
(request/second)

λajj′
traffic rate of service a from fog node j to fog node j′
(request/second)

ha(j)
index of the cloud server to which the traffic for service a is
routed from fog node j

H−1
a (k)

set of indices of all fog nodes that route the traffic for
service a to cloud server k. H−1

a (k) = {j|ha(j) = k}
KS

j storage capacity of fog node j, in bytes

KP
j

processing capacity (maximum service rate) of fog node j,
in MIPS

KM
j memory capacity of fog node j, in bytes

K′Sk storage capacity of cloud server k, in bytes

K′Pk
processing capacity (maximum service rate) of cloud server
k, in MIPS

K′Mk memory capacity of cloud server k, in bytes
nj number of processing units of fog node j
n′k number of processing units of cloud server k
µj service rate of one processing unit of fog node j (in MIPS)

µ′k
service rate of one processing unit of cloud server k (in
MIPS)

lrqa average size of requests of service a, in bytes
lrpa average size of responses of service a, in bytes

waj
waiting time (processing delay plus queueing delay) for
requests of service a at fog node j

w′ak
waiting time (processing delay plus queueing delay) for
requests of service a at cloud server k

xaj binary variable showing if service a is hosted on fog node j

x′ak
binary variable showing if service a is hosted on cloud
server k

V %
a

the percentage of IoT service delay samples of service a that
do not meet the delay requirement.

to monitoring-enabled devices or have monitoring software
agents running on them. The FSC’s Traffic Monitor module
will then communicate with the fog nodes (either directly or
through the fog nodes’ monitoring agent) to get the incoming
traffic to the fog nodes.

2) Virtualziation: Fog nodes in our FOGPLAN framework
are assumed to run some container orchestration software, such

as Docker, Kubernetes, or OpenStack, which automates the
deployment and release of service containers. The reason for
using containers instead of traditional VMs is that containers
are light-weight in comparison to VMs and provide lower
set-up delay, as they share the host OS [46][29]. We con-
sider stateless fog services in the form of containers in our
framework, so that deploying and releasing them is fast and
on-demand, as opposed to slow migration procedures present
in VM-based migration techniques [45], [18], [20]. We leave
the consideration of stateful fog services and their related
migration issues as future work.

G. The QDFSP Problem

In this subsection, we formally define the QDFSP Problem.

Definition 1. QoS-aware Dynamic Fog Service Provisioning
(QDFSP) is an online task that aims to dynamically provision
(deploy or release) services on fog nodes, in order to comply
with the QoS requirements while also minimizing the cost of
resources.

In the next two sections, we first present a possible formu-
lation of an optimization problem for the QDFSP problem at
one time instance. Then, we present two greedy algorithms
that are periodically called to address the QDFSP problem.

IV. ADDRESSING QDFSP IN ONE INSTANCE OF TIME AS
INLP

In this subsection, we present a possible formulation of the
associated optimization problem to address the QDFSP pe-
riodically, that considers the service provisioning at a given
point in time. All notation is explained in Table I. Let a set
of fog nodes be denoted by F , a set of cloud servers by C,
and a set of fog services by A. Let the desired QoS level for
service a be denoted by qa ∈ (0, 1), and delay threshold for
service a by tha.

The underlying communication network, a set of fog nodes
and cloud servers are modeled as a graph G = (V,E), such
that the node set V includes the fog nodes F and cloud
servers C (V = F ∪ C), and the edge set E includes the
logical links between the nodes. Fog nodes and cloud servers
could be located anywhere, and there is no restriction on the
physical network topology. Each edge e(src, dst) ∈ E is
associated with three numbers: ue, the communication cost
of logical link e (cost per unit bandwidth used per unit time,
that is cost/byte); re, the transmission rate of logical link e
(megabits per second); and de, the propagation delay of logical
link e (milliseconds). These parameters are maintained by the
Network Provider (NP) and are shared with the FSP.

The main decision variables of the optimization problem are
the placement binary variables, defined below:

xaj =

{
1, if service a is hosted on fog node j,
0, otherwise.

(1)

x′ak =

{
1, if service a is hosted on cloud server k,
0, otherwise.

(2)



6

Incidentally, we denote by xcur
aj , the current placement of the

service a on fog node j, which can be regarded as an input
to the optimization problem to find the future placement of
services on fog nodes (xaj) and cloud nodes (x′ak).

The binary variable x′ak denotes placement of service a for
each cloud server k. One can simplify this formulation by
removing the index k, considering all cloud servers as a whole.
To be more general, we consider the first formulation (x′ak).

A. Objective
The optimization problem can be formulated as problem P1:

P1 : Minimize (Cproc
C + Cproc

F ) + (Cstor
C + Cstor

F )+

(Ccomm
FC + Ccomm

FF + Cdepl
ΦF )

Subject to QoS constraints.

The cost components are defined below.

Cproc
C =

∑
k∈C

∑
a∈A

C ′Pk LP
a λ
′in
akx
′
akτa, (3)

Cproc
F =

∑
j∈F

∑
a∈A

CP
j L

P
a λ

in
ajxajτa, (4)

Cstor
C =

∑
k∈C

∑
a∈A

C ′Sk L
S
ax
′
akτa, (5)

Cstor
F =

∑
j∈F

∑
a∈A

CS
j L

S
axajτa, (6)

Ccomm
FC =

∑
j∈F

∑
a∈A

u(j,ha(j))λ
out
aj (lrqa + lrpa )τa, (7)

Ccomm
FF =

∑
j∈F

∑
j′∈F

∑
a∈A

u(j,j′)λajj′ l
rq
a τa, (8)

Cdepl
ΦF =

∑
j∈F

∑
a∈A

u(Φ,j)(1− xcur
aj )xajL

S
a . (9)

Cproc
C and Cproc

F are cost of processing in cloud and fog,
respectively; Cstor

C and Cstor
F are cost of storage in cloud and

fog, respectively. Ccomm
FC is the cost of communication between

fog and cloud, Ccomm
FF is the cost of communication between

fog nodes, and Cdepl
ΦF is the communication cost of service

deployment, from the FSC Φ to fog nodes. A service deployed
on a fog node may be released when the demand for the service
is small. Therefore, we assume the services are stateless, that
is they do not store any state information on fog nodes [2],
and we do not consider costs for state migrations. We consider
a discrete-time system model where time is divided into time
periods called re-configuration intervals.

B. Constraints
1) Service Delay: Service delay is defined as the time

interval between the moment when an IoT node sends a service
request and when it receives the response for that request. The
average service delay of IoT nodes served by fog node j for
service a is

daj = [2d(Ia,j) + waj +
lrqa + lrpa
r(Ia,j)

]xaj + (10)

[2(d(Ia,j) + d(j,k)) + w′ak + (
lrqa + lrpa
r(Ia,j)

+
lrqa + lrpa
r(j,k)

)](1− xaj),

where k = ha(j) is the index of a hosting cloud server for
service a (function ha(j) returns index of the cloud server to
which the traffic for service a is routed from fog node j). Ia
is the set of IoT nodes implementing (i.e. running) service a.

As can be inferred from the equation, when service a is
implemented on fog node j, (xaj = 1) service delay will
be lower than when service a is not implemented on fog
node j (xaj = 0). The equation for daj is a conditional
expression based on xaj . The delay terms of each condition
are propagation delay, waiting time (processing delay plus
queueing delay), and transmission delay, in the order from
left to right. d(Ia,j) and r(Ia,j) are the average propagation
delay and average transmission rate between IoT nodes in Ia
and fog node j, respectively, and they are given as inputs
to the FOGPLAN. The term lrqa +lrpa

r(Ia,j)
captures the round-trip

transmission delay, as it is the sum of transmission delays of
the request ( lrqa

r(Ia,j)
) and the response ( lrpa

r(Ia,j)
) for the service

a. Other variables are explained in Table I. Multiple instances
of a given service a can be hosted in the cloud (on multiple
cloud servers), as ha(.) can return the index of different cloud
servers for different inputs j and j′.

We use average/approximate values for the propagation
delay and transmission rate between IoT nodes and fog nodes
so that the Eq. (10) does not include indices of IoT nodes.
We claim that using average/approximate values is reasonable,
because, firstly, fog nodes are usually placed near IoT nodes,
which means IoT nodes served by the same fog node have
similar values of propagation delay and transmission rate.
Secondly, if exact values were to be calculated, the FSC
would need to have information about all the IoT nodes
communicating with the fog nodes, which is not practical.

As discussed above, d(Ia,j) and r(Ia,j) are given as inputs
to the FOGPLAN. These values are either known by the
IoT application owner and can be released to the FSP, or
approximated by round-trip delay measurement techniques. If
obtaining these values are not feasible in a scenario, we can
change the scope of the definition of Eq. (10) to consider the
service delay only within fog to cloud (see next section).

2) Delay Budget: Note that the definition scope of Eq. (10)
can be changed if obtaining average/approximate values for the
propagation delay and transmission rate between IoT nodes
and fog nodes is not feasible. This equation currently captures
the IoT service delay, from the moment an IoT node sends
a request and when it receives the response for that request.
The scope of Eq. (10) is currently IoT-fog-cloud (from IoT to
cloud). We can change this scope to only fog-cloud (within
fog and cloud). In other words, we can just capture the delay
from the moment the request reaches a fog node. In this case
daj can be realized as the average delay budget for service a
at fog node j within fog-cloud, and is equal to

daj = [waj ]xaj + [2d(j,k) + w′ak +
lrqa + lrpa
r(j,k)

](1− xaj) (11)

Notice that the propagation and transmission delay compo-
nents from IoT to fog are omitted from this equation. If this
version of the equation is used, the delay threshold tha should
also be reduced (and renamed to threshold budget) to consider
only the threshold of the portion of delay within fog-cloud.
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In the rest of this paper, we use the original Eq. (10) for
the service delay.

3) Delay Violation: To measure the quality of a given
service a, we need to see what percentage of IoT requests
do not meet the delay threshold tha (delay violation). We first
need to check if average service delay of IoT nodes served by
fog node j for service a (labeled as daj) is greater than the
threshold tha defined in QoS requiremetns for service a. Let
us define a binary variable vaj to indicate this:

vaj =

{
1, if daj > tha

0, otherwise
, ∀j ∈ F,∀a ∈ A. (12)

We define another variable that measures the delay violation
of a given service according to the defined QoS requirements.
Recall that the QoS requirement is that the percentage of delay
samples from IoT nodes that exceed the delay threshold should
be no more than 1 − qa. We define V %

a as the percentage of
IoT service delay samples of service a that do not meet the
delay requirement. V %

a can be calculated as follows

V %
a =

∑
j λ

in
ajvaj∑

j λ
in
aj

, ∀a ∈ A. (13)

Note that V %
a is measured by the FSC, as a weighted average

of vaj , with λin
aj as the weight. In practice, the FSC obtains

λin
aj , the rate of incoming traffic to fog nodes, from the Traffic

Monitor module.
We can now add the cost of delay violations to P1. Let

pa denote the penalty that the FSP must pay per request of
service a if the delay requirements are violated by 1%. The
total cost of delay violation for the FSP will be

Cviol =
∑
j∈F

∑
a∈A

max(0, V %
a − (1− qa))× λin

ajpaτa. (14)

For instance if qa = 97%, any violation percentage V %
a

greater than 3% must be paid for by the FSP. Consider for
a given service a, qa = 97%, pa = 4, and λin

aj = 7 for fog
node j. If the violation percentage is V %

a = 5%, the FSP is
charged the penalty of (5 − 3) × 7 × 4 × 6 = 336 for one
configuration interval of τa = 6 seconds for fog node j. The
total penalty would be the sum of penalties for all services
over all fog nodes.

Once we have discussed all the constraints of P1, we will
add Cviol to P1 and rewrite the problem. Note that all of
the unit cost parameters (e.g. CP

j ) are given as inputs to the
QDFSP problem, hence are known to the FSP.

Remark: It is worth noting that the above optimization
problem aims to minimize the cost of the FSP, which may
result in a solution that places some fog services far from their
corresponding IoT devices. This can happen, for instance, if
the number of IoT nodes that send requests to a particular
fog node is small, or when the FSP’s penalty for violating
delay constraints is not high. In the former example, the few
IoT nodes that send their requests to the less congested fog
node may experience larger service delay if the service is
not deployed on that fog node due to cost savings of not
deploying the service. In the latter example, when the penalty

for violating delay constraints is not high, FOGPLAN may find
a solution in which most services are deployed in the cloud.
Nevertheless, if the fog service is delay-sensitive or has tight
delay constraints, the penalty for violating delay constraints
(pa) will be set to a high value in the QoS agreement.

4) Resource Capacity: Resource utilization of fog nodes
and cloud servers shall not exceed their capacity, as it is
formulated by∑
a∈A

xajL
S
a < KS

j , and
∑
a∈A

xajL
M
a < KM

j , ∀j ∈ F, (15)∑
a∈A

x′akL
S
a < K ′Sk , and

∑
a∈A

x′akL
M
a < K ′Mk , ∀k ∈ C.(16)

If the ample capacity of the cloud is assumed to be unlimited,
Eq. (16) can be dropped.

5) Traffic Rates: Different IoT requests have different pro-
cessing times. In order to accurately evaluate the waiting times
of fog nodes and cloud servers in our delay model, we need to
account for the different processing times of the IoT requests.
To this end, we express the incoming traffic rates to the fog
nodes in units of instructions per unit time.

Let Λaj denote the arrival rate of instructions (in MIPS) to
fog node j for service a. This is the arrival rate of instructions
of the incoming requests that are accepted for processing by
fog node j that is given by

Λaj = LP
a λ

in
ajxaj , ∀j ∈ F,∀a ∈ A. (17)

The requests for different services have different processing
times. Thus, in the definition of Λaj we account for the
different processing times by the inclusion of LP

a . Note that
if service ã is not deployed on fog node j, Λãj = 0 since
xaj = 0. In this case, the incoming traffic denoted by the rate
λin
ãj will not be accepted by fog node j, and hence will be

sent to the cloud. The rate of this “rejected” traffic is denoted
by

λout
aj = λin

aj(1− xaj), ∀j ∈ F,∀a ∈ A. (18)

Let λ′inak denote the incoming traffic rate to cloud server k for
service a. Then we will have λ′inak =

∑
j∈H−1

a (k) λ
out
aj , where

H−1
a (k) is a set of indices of all fog nodes that route the traffic

for service a to cloud server k (H−1
a (k) = {j|ha(j) = k}).

Similar to Eq. (17), the arrival rate of instructions (in MIPS)
to the cloud server k for service a, Λ′ak, can be obtained as

Λ′ak = LP
a λ
′in
akx
′
ak, ∀k ∈ C, ∀a ∈ A. (19)

6) Service Deployment in the Cloud: If the incoming traffic
rate to a cloud server for a particular service (λ′inak) is 0, the
service could be safely released from the cloud server. This
happens when the service is deployed on all the fog nodes that
would otherwise route the traffic for that service to a cloud
server. On the other hand, if at least one fog node routes traffic
for that particular service to a cloud server (λout

aj > 0), the
service must not be released from the cloud server. This is
because part of the traffic is being sent to and served by the
cloud. The following equation guarantees the above statement

x′ak =

{
0, if λ′inak = 0

1, if λ′inak > 0
, {k = h(j)|j ∈ F},∀a ∈ A, (20)
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which can be written as
λ′inak
W
≤ x′ak ≤Wλ′inak, {k = h(j)|j ∈ F},∀a ∈ A, (21)

where W is an arbitrary large number (W > max
a,k

(λ′inak)).

7) Waiting Times: We have all the components of Eq.
(10), except for the waiting times of fog nodes and cloud
servers (waj and w′ak). We adopt a commonly used M/M/c
queueing system [47], [48], [49] model for a fog node with
nj processing units, each with service rate µj and total arrival
rate of

∑
a∈A Λaj (total processing capacity of fog node j will

be KP
j = njµj).

To model what fraction of processing units each service
can obtain, we assume that the processing units of a fog
node are allocated to the deployed services proportional to
their processing needs (LP

a ). For instance, if the requests for
service a1 need twice the amount of processing than that
of the requests for service a2 (LP

a1
= 2 × LP

a2
), service a1

should receive twice the service rate compared to service a2.
Correspondingly, we define faj , the fraction of service rate
that service a obtains at fog node j as:

faj =

{
0, if

∑
a∈A xaj = 0

xajL
P
a∑

a∈A xajLP
a
, otherwise

. (22)

The first condition in the above equation is when no service is
deployed on fog node j. Each deployed service can be seen as
an M/M/c queueing system with service rate of faj ×KP

j =
fajnjµj , and arrival rate of Λaj (in MIPS). Thus, the waiting
time for requests of service a at fog node j will be [50]

waj =
1

fajµj
+

PQ
aj

fajKP
j − Λaj

, (23)

where PQ
aj is the probability that an arriving request to fog

node j for service a has to wait in the queue. PQ
.. is also

referred to as Erlang’s C formula and is equal to

PQ
aj =

(njρaj)
nj

nj !

P0
aj

1− ρaj
, (24)

such that ρaj =
Λaj

fajKP
j

and

P0
aj =

[ nj−1∑
c=0

(njρaj)
c

c!
+

(njρaj)
nj

nj !

1

1− ρaj

]−1

. (25)

Note that in Eq. (23) when a give service a is not imple-
mented on fog node j (i.e. faj = 0), waiting time waj and
ρaj for that service are not defined.

Similarly, cloud server k with n′k processing units (i.e.
servers), each with service rate µ′k and total arrival rate of∑

a∈A Λ′ak can be seen as an M/M/c queueing system (total
processing capacity of cloud server k will be K ′Pk = n′k×µ′k).
Therefore, similar to Eq. (23), w′ak, the waiting time for
requests of service a at cloud server k, could be derived as

w′ak =
1

f ′akµ
′
k

+
P ′Qak

f ′akK
′P
k − Λ′ak

, ∀a ∈ A,∀k ∈ C. (26)

An equation similar to Eq. (24) is defined for P ′Qak , the
probability of queueing at cloud server k. Note that for

simplicity, instead of modeling each cloud server a M/M/c
queue, one may also model the whole cloud as an M/M/∞
queueing system. Finally, stability constraints of the M/M/c
queues for the services on fog nodes and cloud servers imply

Λaj < fajK
P
j , ∀a ∈ A,∀j ∈ F. (27)

Λ′ak < f ′akK
′P
k , ∀a ∈ A,∀k ∈ C. (28)

C. Final Optimization Formulation

P1 can be rewritten as P2 with the same constraints:

P2 : Minimize (Cproc
C + Cproc

F ) + (Cstor
C + Cstor

F )+

(Ccomm
FC + Ccomm

FF + Cdepl
ΦF ) + (Cviol)

Subject to equations (1), (2), (15)− (28).

The objective function of P2 is the summation of eight cost
functions. In some scenarios, though, it is possible that certain
costs (e.g. cost of storage) are the dominant factors in this
summation. In order to consider the general problem in this
paper, we consider all of the eight cost functions; however,
some of them can be omitted in certain scenarios if needed.
Note that in this optimization problem, we only consider the
costs of fog-to-fog and fog-to-cloud communication. In other
words, the cost of communication between IoT and fog is not
considered in the optimization problem, since this is usually
outside the control of the FSP.

Since the incoming traffic to fog nodes is changing over
time, to address the QDFSP, the FSC needs to dynamically
adjust the provisioning of services over time to meet the
QoS requirements. To do this, one approach is to solve the
optimization problem periodically, which may not be feasible
for large network due to non-scalability of INLP. Another
alternative is using some incremental algorithms that are more
efficient than solving the optimization problem. In the next
section, we propose two such algorithms.

V. FOGPLAN’S GREEDY ALGORITHMS

In this section, we describe our proposed greedy algo-
rithms that are called periodically to efficiently address the
QDFSP problem. We propose two algorithms: Min-Viol,
which aims to minimize the delay violations, and Min-Cost,
whose goal is minimizing the total cost. The Min-Viol and
Min-Cost are shown in Algorithm 1 and Algorithm 2 listings,
respectively. Both algorithms try to address the QDFSP prob-
lem efficiently, and if implemented, will be periodically run
by the FSC every τa seconds. The proposed algorithms are
discussed in more detail in the following subsection.

A. Description

1) Min-Viol: The high-level rationale behind the Min-Viol
algorithm is to deploy on the fog nodes those services for
which there is high demand, and to release from the fog nodes
services for which there is low demand, while keeping the
violation low, as per the QoS requirements. Note that when
a given service a is not deployed on a given fog node j, the
traffic routed to the cloud for service a might pass through
the fog node j (or the monitoring-enabled device to which fog
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Algorithm 1 FOGPLAN Min-Viol
Input: Service a size stats, G, qa, tha, λin

aj , cost parameters
Output: Placement of service a that minimizes delay viola-

tion
1: Deploy/release service a in cloud according to Eq. (20)
2: Read service a’s incoming traffic rate to fog nodes
3: List L← sort fog nodes in descending order of traffic rate
4: CALCVIOLPERC(xaj , λin

aj , tha) . V %
a updated

5: canDeploy = true
6: while canDeploy and (V %

a > 1− qa) do . Deploy
7: j = remove from the list L index of the next fog node
8: if L is empty then
9: canDeploy = false

10: end if
11: if (service a is not deployed on fog node j) and (fog

node j has enough storage and memory) then
12: Deploy service a on fog node j . xaj = 1
13: CALCVIOLPERC(xaj , λin

aj , tha) . update V %
a

14: end if
15: end while
16: canRelease = true
17: while canRelease do . Release
18: j = get from the tail of L a fog node j, on which

service a is deployed
19: Set xaj = 0 (and set x′aha(j) = 1, if x′aha(j) = 0)
20: CALCVIOLPERC(xaj , λin

aj , tha) . update V %
a

21: if V %
a ≤ 1− qa then

22: Release service a on fog node j . xaj = 0
23: else . if releasing would cause violation
24: Set xaj = 1, and canRelease = false . exit
25: end if
26: end while

node j is connected). This can happen, for instance, when the
demand for a service a in one location increases and many
requests for (currently cloud-hosted) service a pass through
fog node j. Thus, in FOGPLAN, fog nodes monitor the traffic
for different services and communicate with FSC’s Traffic
Monitor module to act on such demands.

First, the incoming traffic rates to the fog nodes are read
from the Traffic Monitor module, based on which the fog
nodes are sorted in descending order (lines 2-3). Next, using
the method CALCVIOLPERC(.) (shown in Algorithm 3), the
percentage of the violating IoT requests for service a (V %

a )
is calculated. As long as this percentage is more than 1− qa
(lines 6-15), the algorithm keeps deploying services on the
fog nodes, and once V %

a ≤ 1 − qa, it exits the loop. The
boolean variable canDeploy is for eliminating blocking of
the while loop (canDeploy becomes false when V %

a does not
drop below 1 − qa after going through the list). Note that
the services are deployed first on the fog nodes with higher
incoming traffic rate, so that V %

a decreases faster.
When V %

a ≤ 1−qa, we might still be able to release services
on the fog nodes with small incoming traffic rate, without
violating QoS requirements. The second loop (lines 17-26)
releases services on the fog nodes with smaller incoming

traffic rate. First, we try to find a fog node with small incoming
traffic rate (from the end of sorted list L) and check if releasing
the already-deployed service would cause any delay violations
(lines 19-20). If releasing does not cause violation (line 21),
we go ahead and release the service (line 22); otherwise, we
do not release the service and exit (line 24), because releasing
service on the next fog nodes with higher incoming traffic
would cause even more delay violations. Min-Viol requires
service a’s average size statistics (i.e., service storage size,
size of request and reply, amount of processing), graph G, qa,
and tha as input.

In both Algorithm 1 and Algorithm 2, step 1 is useful for
deployment settings where the FSC has access to the cloud
resources as well and is able to deploy services on the cloud
servers. If the FSC has access to the cloud resources, an
instance of service a is deployed or released in the cloud
according to Eq. (20). If the FSC does not have access to
the cloud resources, an instance of service a should be always
running in the cloud, as the cloud will be the last resort for
the requests not processed by the fog nodes.

Algorithm 2 FOGPLAN Min-Cost
Input: Service a size stats, G, qa, tha, λin

aj , cost parameters
Output: Placement of service a that minimizes cost

1: Deploy/release service a in cloud according to Eq. (20)
2: Read service a’s incoming traffic rate to fog nodes
3: List L← sort fog nodes in descending order of traffic rate
4: for all fog node j in L do . Deploy
5: if fog node j has enough storage and memory then
6: if cost savings of deploying a on j > expenses of

deploying service a on j then
7: Deploy service a on fog node j . xaj = 1
8: CALCVIOLPERC(xaj , λin

aj , tha) . update V %
a

9: end if
10: end if
11: end for
12: for all fog node j in L(reverse) do . Release
13: if cost savings of releasing a on j > expenses of

releasing service a on j then
14: Release service a on fog node j . xaj = 0
15: CALCVIOLPERC(xaj , λin

aj , tha) . update V %
a

16: end if
17: end for

2) Min-Cost: The main idea of the Min-Cost algorithm is
similar to that of Min-Viol; however, the major concern in
Min-Cost is minimizing the cost. Min-Cost tries to minimize
the cost by checking if deploying or releasing services will
increase the revenue (or equally will decrease cost). Similar to
the Min-Viol algorithm, the incoming traffic rates to fog nodes
are read from the Traffic Monitor module, based on which the
fog nodes are sorted in descending order (lines 2-3). Next,
we iterate through fog nodes and check if deploying a service
make sense, in terms of minimizing the cost (lines 4-11). Line
6 checks if the cost savings of deploying service a on fog node
j, is larger than the expenses (or losses) when the service a is
not deployed on fog node j. The cost savings of deploying a
service are due to the reduced cost of communication between
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fog and cloud, the reduced costs of storage and processing in
the cloud, and the (possible) reduced cost of delay violations
when the service a is implemented on fog node j. Conversely,
the expenses are the cost of service deployment and the
increased costs of storage and processing in the fog. All the
mentioned costs are calculated and compared for the duration
of one interval (τa).

Algorithm 3 Calculate Delay Violation Percentage
Input: xaj , λin

aj , tha
Output: Percentage of IoT requests that do not meet the delay

requirement for service a (V %
a )

1: procedure CALCVIOLPERC(xaj , λin
aj , tha)

2: Calculate daj for a for all fog nodes (Eq. (10) or (11))
3: Calculate vaj for a for all fog nodes (Eq. (12))
4: Calculate V %

a using Eq. (13)
5: return V %

a

6: end procedure

Similar to deploying (lines 4-11), for releasing, we iterate
through fog nodes, in increasing order of their incoming traffic
rates and check if releasing a service make sense, in terms of
minimizing the cost (lines 12-17). Likewise, line 13 checks
if the cost savings of releasing service a on fog node j is
greater than the expenses when the service a is deployed on
fog node j. The cost savings of releasing a service are due
to the reduced costs of storage and processing in the fog
when the service is released, while the expenses are due to
the increased cost of communication between fog and cloud,
the increased costs of storage and processing in the cloud, and
the (possible) increased cost of delay violations. Min-Cost’s
inputs are similar to those of Min-Viol; additionally, Min-
Cost requires the unit cost parameters (processing, storage,
and networking) to calculate the cost using equations (3)-(9).

B. Complexity
The time complexity of the proposed greedy algorithms

shown in Algorithm 1 and Algorithm 2 listings are discussed
below.

1) Min-Viol: The asymptotic complexity of lines 1-3 is
O(|F | log |F |) due to the sorting of fog nodes. The complexity
of lines 4-5 is O(|A||F |), since function CALCVIOLPERC(.)
calculates daj for all fog nodes. The steps in lines 6-15 run
at most |F | times, hence their complexity is O(|A||F |2).
Similarly, the complexity of lines 17-26 is O(|A||F |2), there-
fore, the overall complexity of Min-Viol for one service is
O(|A||F |2).

2) Min-Cost: Similar to the above analysis, the asymp-
totic complexity of lines 1-3, lines 4-11, and lines 12-17 is
O(|F | log |F |), O(|A||F |2), and O(|A||F |2), respectively. The
overall complexity of Min-Cost for one service is O(|A||F |2).
We can see both algorithms have the same asymptotic com-
plexity. In the next section, we will compare the algorithms
numerically using our extensive simulations.

VI. NUMERICAL EVALUATION

In this section, we discuss the settings and results of the
numerical evaluation of the proposed framework. Our numeri-

cal evaluations are performed using a simulation environment
written in Java2 and are based on real-world traffic traces.

A. Simulation Settings

1) Simulation Environment: The evaluation is performed
using a Java program that simulates a network of fog nodes,
IoT nodes, and cloud servers. The simulator can either read the
traffic trace files or can generate arbitrary traffic patterns based
on a Discrete Time Markov Chain (DTMC). In either case,
the simulator solves the optimization problem and/or runs our
proposed greedy algorithms. The parameters of the simulation
are summarized in Table II, and are explained in what follows.

2) Experiments: To fully understand the benefits of our
proposed scheme, we have conducted five experiments to
study the impact of the different parameters and factors of
the framework that affect the results. The purpose of the
experiments and their settings are summarized in Table III and
are briefly explained here. Experiment-1 (results are shown
in the left column of Fig. 3) is to study the benefits of our
proposed greedy algorithms under a real-world traffic trace.
In experiment-2 (results are shown in the right column of
Fig. 3) we compare the performance of our proposed greedy
algorithms with that of the optimal solution achieved using the
optimization problem. Experiment-3 (results are shown in the
left column of Fig. 4) is for investigating the impact of the
delay threshold, tha, whereas experiment-4 (results are shown
in the right column of Fig. 4) is for investigating the impact of
the configuration interval, τa. Finally, in experiment-5 (results
are shown in Table IV) we analyze the scalability of our
proposed greedy algorithms using larger network topologies
and more services.

3) Topology: The logical topology of the network for
the first four experiments are summarized in Table III. The
topology of the fifth experiment is not fixed and will be
discussed later. The fog nodes are paired with different cloud
servers initially according to a random uniform distribution.
The number of IoT nodes is not required for our experiments,
as we use the aggregated incoming traffic rate from the IoT
nodes to the fog nodes.

The propagation delay can be estimated by halving the
round-trip time of small packets; and as evaluated in our
previous study [39]; it is assumed to be U(1, 2) ms between
the IoT nodes and the fog nodes, and U(15, 35) ms between
the fog nodes and the cloud servers. The transmission medium
between the IoT nodes and the fog nodes is assumed to be
either (50% chance for each case) one hop WiFi, or WiFi and
a 1 Gbps Ethernet link. The fog nodes and the cloud servers
are assumed to be 6-10 hops apart, while their communication
path consists of 10 Gbps (arbitrary) and 100 Gbps (up to 2)
links. The transmission rate of the link between the FSC and
the fog nodes is assumed to be 10 Gbps.

4) QoS parameters: The level of quality of service of
different services is assumed to be a uniform random number
between loose= 90% and strict= 99.999%. Since in this paper
we focus on delay-sensitive fog services, we set the penalty of
violating the delay threshold to a random number in U(10, 20)

2Available at https://github.com/ashkan-software/FogPlan-simulator
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TABLE II
SIMULATION PARAMETERS. U(a, b) INDICATES RANDOM UNIFORM

DISTRIBUTION BETWEEN a AND b. “MI” IS MILLION INSTRUCTIONS.

qa U(90, 99.999)% ue 0.2 per Gb
tha 10 ms u(Φ,j) 0.5 per Gb
d(Ia,j) U(1, 2) ms lrqa U(10, 26) KB
d(j,k) U(15, 35) ms lrpa U(10, 20) B
Core link 10 Gbps, 100 Gbps LP

a U(50, 200) MI per req
Edge link 54 Mbps, 1 Gbps LS

a U(50, 500) MB
KP

j U(800, 1300) MIPS LM
a U(2, 400) MB

K′Pk U(16K, 26K) MIPS pa U(2, 5) per req per %
KM

j 8 GB CP
j 0.002 per MI

K′Mk 32 GB C′Pk 0.002 per MI
KS

j , K′Sk ≥25, ≥250 GB CS
j 0.004 per Gb per sec

nj , n′k 4, 8 Proc. Units C′Sk 0.004 per Gb per sec

per % per sec for experiment-1 and experiment-2, and in
U(100, 200) per % per sec for the other experiments.

5) Real-world Traffic Traces: In order to evaluate our
framework and obtain realistic results, we have employed real-
world traffic traces, taken from MAWI Working Group traffic
archive [51]. MAWI’s traffic archive is maintained by daily
trace captures at the transit link of WIDE to their upstream
ISP. We have used the traces of 2017/04/12-13 in this paper
for modeling the incoming traffic rates to fog nodes from
IoT nodes. The traffic traces are provided by MAWI Working
Group in chunks of 15-minute intervals.

To model the cloud, we have chosen a particular class B
subnet in the traffic traces to represent the IP addresses of
the FSP’s cloud servers. For modeling the fog nodes, we have
selected 10 regions/cities (i.e. subnets) from the traffic trace
file with a large number of packets and assumed that there is
one fog node in each city. The fog node can later serve the IoT
requests coming from the city where it resides. We assumed
that the packets destined to or originated from a class C subnet
belong to the same region/city.

We consider the TCP and UDP packets in the traffic trace to
account for the requests generated by the IoT nodes, because
common IoT protocols, such as MQTT, COAP, mDNS, and
AMQP, use TCP and UDP to carry their messages [52]. The
tuple <IP address, port number> (destination) represents a
particular fog/cloud service, to which IoT requests are sent.

6) DTMC-based Traffic Traces: As mentioned before, we
have also developed a traffic trace generator based on a
Discrete Time Markov Chain (DTMC), as the number of
regions/cities representing fog nodes is limited in the real-
world MAWI traffic traces. DTMCs can be used to simulate
various traffic traces by considering a Markov process for
the traffic rate. Essentially, the states in the Markov process
represent different traffic rates (quantized), and the transition
probabilities are the fraction of time that traffic rate changes
from a particular rate to a new rate.

In our simulation, the DTMC-based traffic trace generator
has 30 states and is constructed based on the 48-hour trace of
2017/04/12-13. The generated traffic trace is random and each
run results in a new traffic trace. Our obtained results based
on such trace produced by DTMC-based traffic trace generator
are discussed in experiment-4 and experiment-5.

TABLE III
SIMULATION EXPERIMENTS SETTINGS

E
xp

er
im

en
t

Purpose of Experiment Traffic Trace Topology
Settings

1

Study the benefits of
Min-Cost and Min-Viol
under real-world traffic
trace

48-hour trace
(2017/04/12-13)

3 cloud servers,
10 fog nodes,
40 services

2

Compare Min-Cost and
Min-Viol greedy
algorithms with the
optimal

2-hour trace
((12:00PM-
2:00PM) of
2017/04/12)

1 cloud server,
10 fog nodes,
2 services

3
Study the impact of delay
threshold tha on the
proposed algorithms

4-hour trace
((12:00PM-
4:00PM) of
2017/04/12)

3 cloud servers,
10 fog nodes,
20 services

4

Study the impact of
reconfiguration interval
length τa on the proposed
algorithms

DTMC
generated traffic
trace

3 cloud servers,
15 fog nodes,
50 services

7) Capacity: In the simulation, the processing capacity of
each fog node, KP

j , is U(800, 1300) MIPS [53], and the
processing capacity of each cloud server, K ′Pk , is assumed
to be 20 times that of the fog nodes. The storage capacity of
the fog nodes, KS

j , is assumed to be more than 25 GB, to host
at most 50 services of the maximum size (size of services, LS

a ,
is U(50, 500) MB for typical Linux containers). The storage
capacity of the cloud servers is 10 times that of the fog nodes.
The memory capacity of the fog nodes and the cloud servers,
KM

j and K ′Mk , is 8 GB and 32 GB, respectively. Fog nodes
assumed to have 4 processing units whereas cloud servers
assumed to have 8. These capacity assumptions are reasonable
with regards to the current cloud computing instance sizes
(e.g., 32 GB memory is the default config for Amazon AWS
t2.2xlarge, m5d.2xlarge, m4.2xlarge, and h1.2xlarge instance
types3).

8) App Size: Several applications could be used to show
the applicability and benefits of the proposed framework. In
order to obtain realistic values for different parameters of the
framework and show the benefits of the scheme under practical
situations, we consider mobile augmented reality (MAR) as the
application that runs on IoT devices. In MAR applications, the
requests have a delay threshold of 10 ms [1]. The average size
of request and response of the MAR applications are set as
U(10, 26) KB and U(10, 20) byte, respectively [54], and the
required amount of processing for the services is U(50, 200)
MI per request [35].

9) Deploy and Release Delay: One question that we need
to answer is: how much delay does deploying or releasing
a service incur? Is this delay negligible in practical fog
networks? If deploying or releasing services fog service causes
extra delay, this could have a significant impact on QoS.
Nonetheless, deploying and releasing containers takes less
than 50 ms [46], wheres the interval of monitoring traffic and
running the FOGPLAN for deploying services in a real-world
setting would be in the order of tens of seconds to minutes.

3See https://aws.amazon.com/ec2/instance-types/
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In our simulations, the start-up delay of the service containers
is set to 50 ms.

10) Cost: The cost of communication between nodes, ue,
is 0.2 per Gb, and between the FSC and fog nodes, u(Φ,j), is
0.5 per Gb. At the time of writeup of this paper, there was no
standard fog pricing, by which we can define reference costs.
The cost of processing in fog nodes and cloud servers is set
to 0.002 per MI. The cost of storage in fog nodes and cloud
servers is 0.004 per Gb per second.

B. Results
The results of the simulation are shown in Fig. 3, Fig. 4, and

Table IV. We will discuss the five experiments in more detail
in this subsection. In all figures, the label “All Cloud” indicates
a setting where the IoT requests are sent directly to the cloud
(that is, fog nodes do not process the IoT requests). “Min-Viol”
and “Min-Cost” represent the two proposed greedy algorithms,
and “Static Fog” is a baseline technique where the services are
deployed statically at the beginning, as opposed to the dynamic
deployment. Static Fog uses the Min-Cost algorithm, and finds
a one-time placement of the fog services at the beginning of
the run, using the average traffic rates of the fog nodes as the
input. The “Optimal” label indicates a setting where (optimal)
results are obtained using the optimization problem introduced
in Section III-G (equations (1)− (28)).

1) Experiment-1: This experiment is for studying the bene-
fits of our proposed greedy algorithms under real-world traffic
traces. The figures on the left column of Fig. 3 show the
results of experiment-1 and are obtained using the 48 hours
of trace data of 2017/04/12-13. In experiment-1, both the
interval of traffic change and τa are 15 minutes. Fig. 3a
represents the normalized incoming traffic rates to the fog
nodes in experiment-1. On the next row, Fig. 3b demonstrates
the average service delay of the IoT nodes. Since there is no
fog computing, All Cloud results in the highest service delay.
Min-Viol achieves the lowest delay, as its goal is to minimize
the violation. Min-Cost fluctuates around Static Fog, since, in
a sense, Min-Cost is the dynamic variation of Static Fog. The
reason Min-Cost has larger service delay than Static Fog will
become clear soon.

On the third row, Fig. 3c shows the average cost of the
various methods over time. All Cloud has the highest cost be-
cause it cannot satisfy the tight QoS requirement of the MAR
applications and it incurs in a noticeable service penalty. Even
though Min-Cost is envisioned for minimizing cost, it does not
achieve the lowest cost. Interestingly, Min-Viol achieves the
lowest cost, primarily as it minimizes the violation. The Static
Fog’s cost is more than that of Min-Cost, as its resulting static
placement cannot keep up with the changing traffic demand.

Figure 3d illustrates the percentage of delay violations in
the various methods. Clearly, All Cloud has the highest delay
violation. Min-Viol’s great performance is evident as it has the
lowest delay violation of around 3%. The delay violations of
Static Fog and Min-Cost are comparable; when the magnitude
of the traffic is small, Min-Cost deploys fewer fog services to
reduce cost, thus incurs more delay violations.

The figures on the last two rows of the left column of Fig.
3 show the average number of services deployed on the fog
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Fig. 3. Simulation Results. Left: Experiment-1 (48-hour trace). Right:
Experiment-2 (2-hour trace).

nodes (Fig. 3e) and the cloud servers (Fig. 3f). All Cloud
does not deploy any services on fog nodes while it deploys
all of the services in the cloud. As expected, the number of
deployed services on the fog nodes for the Static Fog approach
does not change over time. It is evident that Min-Viol deploys
more services on the fog nodes than Min-Cost, to minimize
the service delay, thus minimizing the delay violations. Among
fog approaches, Min-Cost (roughly) has the lowest number of
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the deployed services on the fog nodes and the most number of
the deployed services on the cloud server, as it tries to maintain
a low-cost deployment. It is interesting to note the shape of
the deployed services using Min-Cost; it seems that when the
traffic rate is large, Min-Cost prefers deploying services in the
cloud to deploying services on the fog nodes to minimize the
cost.

2) Experiment-2: In experiment-2 we compare the perfor-
mance of our two proposed greedy algorithms with that of
the optimal solution achieved using the optimization problem
introduced in Section III-G. To solve the INLP problem, the
Java program tries all the possible combinations of boolean
variables xaj and x′ak, and finds the placement that mini-
mizes the cost. The figures in the right column of Fig. 3
show the results of this experiment and are obtained using
2 hours (12:00PM-2:00PM) of trace data of 2017/04/12. In
experiment-2, the interval of traffic change is 1 minute and τa
is set to 2 minutes.

Figure 3g shows the normalized incoming traffic rates to the
fog nodes. Figure 3h shows the average service delay, and we
observe that All Cloud has the highest average service delay.
Optimal and Min-Viol achieve the lowest average service de-
lays, while Min-Cost’s average service delay is larger. Figure
3i illustrates the average cost of the methods. As expected,
All Cloud again has the highest cost, mainly due to its high
delay violation, whereas Optimal brings the lowest cost since
it finds the optimal solution to the cost minimization problem.
Min-Viol has a slightly lower cost compared to Min-Cost, and
its cost gets very close to that of the Optimal.

Figure 3j illustrates the percentage of the delay violation in
the various methods. All Cloud has the highest delay violation
rate, whereas Min-Viol achieves the closest performance to
that of the optimal service deployment. Finally, the last two
rows on the right column of Fig. 3 show the average number
of services deployed on the fog nodes (Fig. 3k) and the cloud
servers (Fig. 3l). All Cloud deploys all the services in the
cloud. Conversely, Optimal deploys all the services on the fog
nodes.

From this experiment, we can observe that Min-Viol
achieves a closer performance to the optimal service deploy-
ment than the Min-Cost algorithm. The good performance
of the Min-Viol algorithm is due to its aggressiveness on
deploying more services on the fog nodes to minimize the
violations. Moreover, since the application in this paper is
assumed to have a high service delay penalty, Min-Viol’s more
deployed services on the fog nodes is the reason for its superior
performance.

3) Experiment-3: The next set of diagrams shown in the
left column of Fig. 4 illustrate the impact of delay threshold
for service a (tha) on our proposed algorithms. These figures
are obtained using the trace of 4 hours (12:00PM-4:00PM)
of 2017/04/12. The error bars on this set of figures show the
99% confidence intervals of the results. When the width of
the confidence interval, no error bar is shown. The interval
of the traffic change and τa are 10 seconds. The rest of the
parameters of the simulation are the same as before.

Figure 4a depicts how delay threshold affects the average
service delay. When the delay threshold increases, the average

service delay of all the fog approaches (Min-Viol, Min-Cost,
and Static Fog) increases, and finally reaches to that of All
Cloud. This is because when the delay threshold is large, the
greedy algorithms tend to deploy fewer services on the fog
nodes; hence requests will have large service delays as they
will be served in the cloud. As expected, Min-Viol has the
lowest average service delay among all the approaches. Min-
Cost achieves the second lowest average service delay.

Figure 4b illustrates the decrease in the average cost of all
four approaches when the delay threshold increases. This is the
case because when the delay threshold is high, fewer services
are deployed on the fog nodes, and fewer requests violate
the delay threshold requirements. When the delay threshold is
high, there will be fewer delay violations, and the cost of All
Cloud gets closer to that of the other fog approaches. When
the delay threshold is larger than 75 ms, there will be no
delay violation even if the services are not deployed on the
fog nodes. Hence, when the delay threshold is larger than 75
ms, all the services will be deployed in the cloud, and all the
approaches will have the same cost value. When the delay
threshold is not too large, Min-Cost and Min-Viol have the
lowest cost.

Figure 4c shows the performance of the four approaches
with regards to delay violations. Min-Viol’s delay violation
is the lowest, while the All Cloud approach has the highest
delay violation. The violations of Min-Cost and Static Fog are
moderate because they are not tuned for the goal of minimizing
delay violation. As the delay threshold becomes higher, the
delay violation of all the approaches becomes smaller. The
delay violation of all the approaches does not change when
the delay threshold is less than 38 ms. The reason is, with
the values of the simulation parameters in the current setup,
when the delay threshold is below 38 ms, all the approaches
place the same number of services on the fog nodes and the
cloud servers. Nevertheless, when the delay threshold becomes
greater than 38 ms, the average delay violation becomes lower.
This period of constant delay violation is also evident in
Fig. 4d and Fig. 4e. In both figures, the number of deployed
services on fog nodes and cloud servers remains constant when
the delay threshold is less than 38 ms. As the delay threshold
becomes higher, fewer services are deployed on the fog nodes,
and a greater number of services are deployed on the cloud
servers.

4) Experiment-4: The next set of diagrams shown in the
right column of Fig. 4 depict the impact of the reconfiguration
interval length (τa) on our proposed algorithms. We use the
DTMC-based traffic trace generator for this experiment for the
traffic trace. Similar to experiment-3, the error bars on this set
of figures show the 99% confidence intervals of the results.
Min-Viol and Min-Cost are shown on these figures since the
reconfiguration interval is not relevant for All Cloud and Static
Fog. The interval of the traffic change is 10 seconds and the
length of the reconfiguration interval varies from 10 to 200
seconds.

Figure 4f illustrates how the length of the reconfiguration
interval affects the average service delay. We can see that when
τa becomes larger, the average service delay becomes larger
as well, simply because the greedy algorithms are not run
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Fig. 4. Simulation Results. Left: Experiment-3 (Impact of delay threshold
tha). Right: Experiment-4 (Impact of reconfiguration interval length τa).

frequently. Similarly, Fig. 4g shows how the average cost of
both algorithms increases as the length of the reconfiguration
interval becomes greater. This is again due to the infrequent
run of the algorithms that incurs more service penalty.

The results in Fig. 4h also show the increase in the average
delay violations as τa becomes greater. Finally, the last two
diagrams in the right column of Fig. 4 show the number
of deployed services on the fog nodes and cloud servers as
a function of τa. Min-Viol maintains the same number of
deployed services, whereas the length of the reconfiguration
interval affects the number of deployed services in Min-Cost.

We reason that there exists a fundamental tradeoff for
choosing the appropriate length of the reconfiguration interval:

TABLE IV
SCALABILITY OF GREEDY METHODS. NUMBER OF CLOUD SERVERS IS 3.

TIME IS AN AVERAGE FOR INDIVIDUAL SERVICE. qa = 90%

# Fog Nodes # Services Time (Min-Cost) Time (Min-Viol)
100 100 8ms 6ms
100 1000 11ms 13ms
100 10000 60ms 272ms
100 100 8ms 6ms
1000 100 384ms 303ms
10000 100 3s 199ms 1m 58s 992ms

the length of the reconfiguration interval must be small enough
so that the frequent running of the greedy algorithms can
reduce the average service delay, violation, and finally can
minimize the cost. On the other hand, the reconfiguration
interval must be long enough for the greedy algorithms to
finish running. The length of the reconfiguration interval must
be chosen according to the aforementioned trade-off. In the
next experiment, we numerically measure the actual runtime
of the greedy algorithms in different settings.

5) Experiment-5: In this experiment, we analyze the scala-
bility of our proposed greedy algorithms using larger network
topologies and more services. In Section V-B we discussed
the asymptotic complexity of Min-Cost and Min-Viol. In this
section, we discuss our measurements of the actual running
time of these algorithms. Since the number of regions/cities
representing fog nodes is limited in the real-world MAWI
traffic traces, we use the DTMC-based traffic trace generator
for this experiment.

The results are shown in Table IV. The numbers in the
columns titled Time in Table IV are the averages of running the
greedy algorithms for the corresponding number of services
10 times. For instance, the numbers in the time column of the
first and fourth rows of Table IV represent the average running
times for 10 runs of the greedy algorithms over 100 services.
The running time of the algorithms is precisely measured
using the time command in Unix. The initialization time is
subtracted from the total time to get the exact running time of
the algorithms. The computer we used for this experiment has
the following specifications: 4-Core Intel Xeon E5620, 12GB
RAM, CentOS 6.9 (Kernel 2.6.32-696), JRE 1.8.0 171, JVM
25.171.

Recall that the asymptotic complexity of both Min-Cost and
Min-Viol is O(|A||F |2). This is also evident by the results in
the Table IV; the algorithms scale linearly with the number
of services (first 3 rows) and the running times stay below 1
second. However, the algorithms scale quadratically with the
number of fog nodes (last 3 rows). For instance, when we have
10,000 fog nodes, Min-Cost takes about 3 seconds and Min-
Viol takes around 2 minutes to finish the service deployment
of one service. The total time for running the Min-Cost and
Min-Viol for all services, in this case, would be around 5
minutes and 3 hours, respectively.

C. Discussion

It can be seen that Min-Cost has generally lower running
time (is faster) in bigger settings since its main loop conditions
do not depend on the value of qa (they depend on cost).
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Conversely, since the main loops of Min-Viol depend on the
value of qa, Min-Viol takes longer to finish when the quality
of service value is strict (e.g. qa = 99.9%). Thus, in general,
Min-Viol is slower than Min-Cost. Nevertheless, as seen in
the previous experiments, Min-Viol has lower average service
delay and lower delay violations than Min-Cost. It is clear
now that Min-Viol’s superior performance is at the cost of its
slower runtime. The reconfiguration interval length must be
chosen big enough so that the chosen greedy algorithm can
finish deploying services during this interval.

As discussed before, to address the QDFSP problem,
solving the optimization problem periodically may be not
feasible, especially for large networks. The proposed greedy
algorithms can be called periodically as alternative approaches
for addressing the QDFSP problem. The results show the
performance of Min-Cost and Min-Viol algorithms compared
to the optimal.

Nevertheless, it may not be also efficient to run the greedy
algorithms too frequently, as it is not always good to deploy
(or release) services in response to a short-lived traffic peak
(or drop). We refer to the issue of frequent deploy and
release as impatient provisioning, and it can happen when
the traffic rate fluctuates rapidly. The limitation of the current
FOGPLAN framework is that it lacks a standard mechanism to
handle impatient provisioning; one has to manually choose an
appropriate length for the reconfiguration interval τa, consid-
ering the discussed trade-off in experiment-4 and the impatient
provisioning issue.

One way to address impatient provisioning is to choose a
greater value for reconfiguration interval length and consider
the average of the traffic in those durations as the input
traffic to the algorithms. Another method would be using
online learning algorithms, such as follow the regularized
leader (FTRL) [55] for traffic prediction. If the traffic is
predicted beforehand, peaks and drops could be predicted and
the decision to run the greedy algorithms can be made more
intelligently. To improve FOGPLAN, we plan to incorporate
learning methods for traffic prediction in our future work.

VII. CONCLUSION

Fog is a continuum filling the gap between cloud and IoT,
which brings low latency, location awareness, and reduced
bandwidth to the IoT applications. We discussed how FOG-
PLAN could benefit Fog Service Providers and their clients,
in terms of improved QoS and cost savings. For addressing
the QDFSP problem, a possible INLP formulation and two
greedy algorithms are introduced that must be run periodically.
Finally, we presented the results of our experiments based on
real-world traffic traces and a DTMC-based traffic generator.
Both Min-Viol and Min-Cost have the same asymptotic com-
plexity, however, Min-Cost is faster than Min-Viol, especially
when there are more fog nodes and services. Except for
the optimal deployment (achieved by solving the INLP),
Min-Viol has the lowest average service delay and average
delay violations. We saw that Min-Viol’s superior performance
comes at the cost of a slower runtime. We also discussed the
fundamental trade-off for choosing the appropriate length of
the reconfiguration interval.

As future work, it is interesting to see how the distance
of the FSC, relative to the fog nodes, can affect the pro-
posed scheme. Moreover, QDFSP is achieved through either
deploying new service(s) or releasing existing service(s) from
fog nodes, which means the decision variables are binary.
However, considering non-binary variables (that is considering
scaling up and down service or container capacities) as a
response to load variation may be a future research direction.
Lastly, as briefly discussed in the paper, additional future
directions are to (i) consider stateful fog services and related
migration issues and (ii) design a protocol for fog service dis-
covery (iii) incorporate learning methods for traffic prediction.
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