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Abstract—This work presents the problem of survivable path
pair routing in multi-domain optical networks with geographi-
cally correlated failures. The objective is to minimize the risk
of simultaneous failure of both the primary and backup paths.
We develop a probabilistic model to calculate the simultaneous
failure probability of both the paths under circular geographic
failures with uniform and non-uniform distributions of epicenter
location. We develop topology aggregation techniques and an
inter-domain minimum overlapping area routing algorithm based
on the aggregated information from each domain. Our algorithm
is compared to Suurballe’s Algorithm (SUR) and an approach
with full information shared amongst domains, and we show
that our heuristic approach is effective in reducing the total
probability of simultaneous failure.

Index Terms—Multi-domain optical network, survivability,
geographically correlated failures, topology aggregation.

I. INTRODUCTION

OPTICAL networks may be prone to geographically cor-
related failures, which not only affect components at the

epicenter of the failure, but which may also lead to the failure
of neighboring network components, resulting in a tremendous
amount of information loss. For example, an earthquake in
Nepal in 2015 knocked out thousands of network components
due to technical failure. Other examples of events that lead to
geographically correlated failures are manmade disasters, such
as EMP (electromagnetic pulse) attacks and nuclear attacks
[2]. Considering such geographically correlated failures, it is
important to protect the ability of the network to continue
carrying traffic when such failures occur by developing ap-
propriate survivability mechanisms.

The probability of physical failure for the network com-
ponents typically depends on both the geographical distance
of the components to the center of the failure event and the
intensity of the disaster. In order to understand the occurrence
of some failure events in a specific geographical region, the
correlation of the event with the probability of occurrence of
other events in the vicinity should be considered. For example,
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earthquakes may trigger other earthquakes and aftershocks in
their surrounding, representing a correlation between epicen-
ters [3].

A common approach to providing survivability at the net-
work layer is to provision protection resources in the network
[4]. In path protection schemes, for each working path, a link-
disjoint backup path is provisioned in order to protect against
the failure of any link along the working path. However, under
correlated failures, such an approach may not be effective if
links on the primary path share correlated risks with links
on the backup path. One approach to deal with correlated
failures is through the concept of shared risk link groups
(SRLGs), in which each SRLG identifies a set of links that fail
simultaneously due to the same risk. In this case, survivability
can be provided by provisioning an SRLG-disjoint backup
path for each working path. However, the problem of finding
SRLG-disjoint paths has been shown to be NP-complete [5].
Furthermore, for the case of geographically correlated failures
in which the location of the epicenter of the failure is not
known in advance, it may be difficult and impractical to model
all possible failure events using SRLGs.

Additionally, providing survivability in a multi-domain en-
vironment is an even greater challenge than in single-domain
environments because full information regarding the resources
in each domain is often not available due to the privacy policies
of domain administrators [6]–[9]. One technique for facilitat-
ing path provisioning over multi-domain optical networks is
topology aggregation, which is used for exchanging limited
domain information while maintaining the privacy of domain
administrators [8]. In topology aggregation, each domain is
represented by an aggregated logical topology in which aggre-
gated links interconnect the border nodes of the domain. The
underlying intra-domain paths for the aggregated links are not
revealed to other domains. The aggregated topology may also
provide some limited information for each of the aggregated
links, and the amount of information to be exchanged could
depend upon domain policies. In some cases, only the distance
of the shortest paths between border nodes is presented in
topology aggregation, while some other aggregations might
provide information on the disjointness of aggregated links
through SRLGs [7].

This paper considers the problem of finding a pair of paths
(primary and backup) in a multi-domain optical network, such
that the probability of simultaneous failure of both the primary
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Fig. 1. Survivable routing scheme against a random disk-shaped geographi-
cally correlated failure with radius r.

path and backup path is minimized. In our preceding work
[1], we consider a geographically correlated failure model
in which a failure is represented by a circular disk, located
uniformly in the plane of the network with an assumption
that all components within the area of this circular disk fail
simultaneously. In this paper, we extend our model to a
non-uniform distribution of failure event epicenter location
in the network plane. Furthermore, the intractability of this
problem is evaluated by reduction to the Region Disjoint
Paths Problem. We propose a topology aggregation scheme
for each domain that provides necessary information about the
geographic distances between links in the domain. Then, using
this aggregated topology information, we develop a heuristic
algorithm to provision primary and backup paths in such a
way that they are less likely to fail simultaneously due to a
geographically correlated failure. To motivate our survivability
constraint mentioned in the first statement, we include an
example in the next section.

A. An Example

Fig. 1 shows a scenario of a multi-domain network with
four domains. A circle with radius r shows the geographical
failure and the network components that are affected by the
geographical failure. Consider three routing paths from source
A to destination K. In this example, if our primary path is
A−B−L−K (considering shortest distance path from source
to destination) and it fails, then path A−C −M −K cannot
be used as a backup path, since it lies in the same disaster
region as the primary path. On the other hand, path A−D−
E−G−J −H−N −K is far enough from the primary path
that it is less likely to fail at the same time, and thus could be
a possible choice of backup.

B. Related Works

Survivability in multi-domain optical networks has been a
well-researched area. In [9], the authors survey survivability
techniques in multi-domain optical networks and compare

the performances of different approaches based on different
metrics. Most of these works focus on either a single com-
ponent failure or a small number of simultaneous fiber cuts.
Correlated failures of nodes and links can be often addressed
by the concept of shared risk node groups or SRLGs [10].
In [7], Gao et al. propose SRLG-aware topology aggregation
approaches that can help to find a pair of inter-domain paths
with a minimum set of common SRLGs for multi domain
optical networks. In [11], the authors present a protection
scheme for multi-domain optical networks for correlated and
probabilistic failures using a p-SRLG framework for multi-
domain networks.

The problem of survivability of networks against geograph-
ically correlated failures has been extensively studied in works
such as [2], [3], [12]–[14]. The work in [2] includes the use
of computational geometric tools to construct algorithms that
identify vulnerable points within the network under various
metrics. [12] presents a survey of strategies for protection
against geographically correlated failures or large scale dis-
asters. In [13], the authors consider disasters that take the
form of random line cuts and emphasize geometric techniques
to evaluate average two-terminal reliability towards the study
of network resiliency. In [14] the authors study disasters as
randomly located disks in the network plane, and using results
from geometric probability, they approximate some network
performance metrics to such a disaster in polynomial time. [3]
presents a stochastic model, based on spatial point processes,
for representing epicenters on the network plane in order to
model spatially inhomogeneous and correlated link failures in
communication networks. Different scenarios with inhibition
or clustering between epicenters are presented, which enables
detailed assessment of vulnerabilities of the network to the
level of inhomogeneity and spatial correlation. Although these
papers discuss the impacts of geographical failures, they con-
sider networks as single domain architectures. The additional
challenge in providing survivability in multi-domain networks
with geographically correlated failures is to develop a topology
aggregation scheme that provides necessary information about
the topological locations of nodes and edges within a domain.

The rest of the paper is structured as follows. Section II
presents the problem statement, description of the network
model and failure model, and a probabilistic model to calculate
the simultaneous failure probability for two paths. Section
III presents details of the topology aggregation scheme, and
discusses the algorithm for finding a pair of survivable multi-
domain paths based on the topology aggregations. In Section
IV, we present the numerical evaluation of our algorithm,
comparing it to Suurballe’s algorithm and a full information
approach for calculating region disjoint paths. Discussions are
provided in Section V. We conclude our paper in Section VI.

II. PROBLEM STATEMENT AND FAILURE MODELING

We begin this section by describing our multi-domain
network model, followed by the failure model, and then we
introduce the concept of vulnerable zone of edges and paths.
We also discuss a probabilistic model to calculate simultane-
ous failure probability for two paths, first under assumption
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Fig. 2. Geometrical representation for vulnerable zones around an edge.

that the failure location is uniformly distributed in the plane
of the network and then extend it to non-uniform distribution
of the failure location.

A physical multi-domain network is denoted by a graph
Gp (Dp, Lp, Cp), where Dp is a set of domains, Lp is a
set of bi-directional inter-domain links and Cp: Lp → R+

is a set of inter-domain link distances. Domain i is denoted
by graph Gi (Vi, Ei, Bi, C ′

i), where Vi is a set of intra-
domain nodes for Domain i, Ei is a set of bi-directional intra-
domain links for Domain i, Bi is a set of border nodes for
Domain i, and C ′

i: Ei → R+ is a set of intra-domain link
distances within Domain i. We assume that inter-domain link
distances are greater than intra-domain link distances. We are
also given a set of physical coordinates, (Xv, Yv), that denotes
the location of each node v ∈ Vi in the physical plane of
the network. We assume all edge locations are straight lines
between nodes in the physical plane of the network.

We model a geographically correlated failure as a circular
region of radius r centered at a random location in the physical
plane of the network. We assume that there is only one
geographically correlated failure in the network at a time,
and that all network components located within the area of
the circular region of radius r will fail at the same time. The
location of the epicenter of the failure is determined by a two-
dimensional probability density function f(x, y) defined over
the plane of the network.

In this paper, we assume that the physical locations in
the network are mapped to a planar coordinate system. Al-
ternatively, in large-scale long-haul networks, such as inter-
continental networks, locations may be mapped to spherical
coordinates on the Earth’s surface. While projecting spherical
coordinates to planar coordinates may introduce some distor-
tion [15], the study of such distortions is beyond the scope of
this paper.

A. Probabilistic Model

Based on the failure model, we define the vulnerable zone
of an edge, V Ze(i,j) , as the region around edge e(i,j) in the
network plane, such that if the epicenter of a failure is located
within this region, it will cause failure of edge e(i,j) [2]. Figure
2 illustrates the concept of vulnerable zone around an edge.
All points within V Ze(i,j) are at a distance of less than r from
edge e(i,j). The failure probability (Pfe(i,j)) of an edge e(i,j)
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Fig. 3. Representation of the overlapping region of two paths between a pair
of border nodes.

is determined by the probability that a failure occurs in the
vulnerable zone of the edge.

The probability that the failure occurs in the vulnerable zone
is determined by integrating the failure location probability
density function f(x, y) over the vulnerable zone. In the case
of uniform distribution of the failure’s epicenter location, the
probability is directly proportional to the area of the vulnerable
zone itself. In general, the failure probability (Pfe(i,j)) of edge
e(i,j) can be written as:

Pfe(i,j) =

∫ b

a

∫ g1(x)

g2(x)

f(x, y) dx dy, (1)

where a and b are the leftmost and rightmost points of the
vulnerable zone in the x-y plane, and g1(x) and g2(x) are
the curves denoting the upper and lower boundaries of the
vulnerable zone (see Figure 2). For the case in which f(x, y)
is uniform, Pfe(1,2) = a12/Ω, where a12 is the area of the
vulnerable zone, and Ω is the area of the entire plane of the
network. We define the vulnerable zone V ZR(s,d) of a path
R(s,d) from source node s to destination node d to be the
union of vulnerable zones V Ze(i,j) of all the edges e(i,j) in
path R(s,d).

V ZR(s,d)
=

⋃
e(i,j)∈R(s,d)

V Ze(i,j) , (2)

PfR(s,d)
=

∫
V ZR(s,d)

f(x, y) dx dy, (3)

where PfR(s,d)
is the probability of failure of path R(s,d).

Let A(R(s,d), R(s′,d′)) be the overlapping region between
the vulnerable zones of path R(s,d) and path R(s′,d′):

A
(
R(s,d), R(s′,d′)

)
= V ZR(s,d)

∩ V ZR(s′,d′) . (4)

The probability of R(s,d) and R(s′,d′) failing simultaneously
is then given by:

PA =

∫
A(R(s,d),R(s′,d′))

f(x, y) dx dy. (5)

For the case in which the failure location is uniformly dis-
tributed, the probability of simultaneous failure is proportional
to the area of the overlapping region of the two paths, which
is denoted as δ(R(s,d), R(s′,d′)). One approach to calculate
the area of the overlapping region, δ(R(s,d), R(s′,d′)), of two
paths, is to overlay an N × N grid over the plane of the
network for a large value of N . Then consider K = N2 grid
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points at the intersection of the grid lines, and for each of
these grid points, if the distance between the grid point and
the path R(s,d) is less than r, then the grid point lies in the
vulnerable zone V ZR(s,d)

. Let K ′ be the number of grid points
that fall within the vulnerable zone of both path R(s,d) and
R(s′,d′). The area of the overlapping region of the two paths
(refer Figure 3) can then be estimated as (K ′/K) multiplied
by the area of the entire plane of the network, Ω:

δ
(
R(s,d), R(s′,d′)

)
= (K ′/K)× Ω, (6)

and the probability of R(s,d) and R(s′,d′) failing simultane-
ously can be estimated as

δ(R(s,d),R(s′,d′))

Ω .
The area of the overlapping region, δ(R(s,d), R(s′,d′)), is

used in the topology aggregation scheme to assist in finding
pairs of paths through a domain that have minimum overlap-
ping areas, which indicates that the paths are less susceptible
to a common geographically correlated failure.

For the case in which the probability density function of
the location of the epicenter is non-uniform, the probability
density function may be obtained based on a hazard map
generated from real data, as in Fig. 4 [16]. In such cases,
the hazard map could be assumed as a collection of discrete
grid points spread throughout the geographical space, in which
points in the network plane may have various intensities,
as shown by different colors. The probability density of the
failure location can be obtained from the hazard map as
follows:

f(x, y) = z · c(x, y), (7)

where, z is a normalization constant, and c(x, y) is the intensity
of each point from the hazard map. To obtain the intensities
from the given hazard map, we use the inbuilt tools in
MATLAB R2017a and adjust the intensity values for the given
map on a scale of 0 - 9. Then, the PA is the volume under the
height function f(x, y) over the overlapping area. Similarly in
this case, we estimate the probability of simultaneous failure
of the two paths as γ

(
R(s,d), R(s′,d′)

)
. Let G be the set of

(x, y) grid points in the vulnerable zone of both paths R(s,d)

and R(s′,d′), then:

γ
(
R(s,d), R(s′,d′)

)
=

∑
(x,y)∈G

k · f(x, y), (8)

where, k is the area of small square around each grid point
and is used for scaling. As Ω is the area of the network plane,
then L =

√
Ω is the width of the plane (assuming a square

plane). If we set an N × N grid, then the area of the small
square around each grid point is k = L/N × L/N .

Given the above framework, the goal is to develop a topol-
ogy aggregation scheme that takes into account the area of the
overlapping region of two paths, and to use the information
provided by the topology aggregation scheme to find two
multi-domain paths from s to d such that the simultaneous
failure probability of the two paths is minimized.

B. Intractability

To prove the NP-completeness of the Minimum Overlap-
ping Area Routing Problem we select the Region-Disjoint

2/16/18, 11(34 AMHazardMap2014_lg.jpg 2,250×1,500 pixels
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Fig. 4. Hazard map showing distribution of seismic hazards in 2014. [16]

Paths Problem, which is already proved to be NP-complete
using 3-SAT [17]. Formal descriptions of both problems are
presented first, followed by the reduction of the Minimum
Overlapping Area Routing Problem to a decision problem.

Problem 1. Region-Disjoint Paths Problem: Given a network
G[V,E] with positive link weights and the diameter of a failure
region (an arbitrary two-dimensional figure), find two region-
disjoint paths from s to d, with a minimum total weight as
reflected by the sum of the link weights in the two paths.

Problem 2. Minimum Overlapping Area Routing Prob-
lem: Given a multi-domain network G[V,E], with positive
link weights and given the diameter of an arbitrary two-
dimensional circular disk, find two paths from s to d with
minimum total weight. The weights of the two paths are
denoted by a linear combination of non negative link distance
and area of the overlapping region between them.

Problem 3. Decision Problem: Given a network G[V,E], along
with the radius of a two-dimensional circular disk, and the two
paths from s to d, will the area of the overlapping region of
the two paths be less than some value A and will the link
distance be less than some value D (assuming a bound on the
area of the overlapping region and the link distance)?

Proof. The process of finding the region disjoint paths in
G[V,E] considers that the two paths will be completely node
and link disjoint and are at least D = 2r distance apart from
each other. If we consider A = 0 in the Minimum Overlapping
Area Routing Problem at α = 1.0 which is the trade off factor
(will be explained in later section), i.e. if we consider only the
overlapping area as the weight of the link, this condition could
be achieved. Therefore, we state the Minimum Overlapping
Area Routing Problem to be NP-complete as it contains the
Region-Disjoint Paths Problem as an instance. �

III. HEURISTIC ALGORITHM

Due to the intractability of this problem, in this section, we
propose a heuristic algorithm called the Minimum Overlap
Area Routing Algorithm (MOA). The algorithm uses the
topology aggregation information provided by each domain
in order to provision primary and backup paths with a low
probability of simultaneous failure. The method for creating
these topology aggregations is discussed next.
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A. Topology Aggregation
Due to the privacy restrictions on the exchange of com-

plete domain information with other domains in the network,
topology aggregation may be used to exchange limited infor-
mation about each domain. Typically, topology aggregation
provides an aggregated logical topology for each domain,
along with some information on the properties of the links
in the topology. Common logical topologies used in topology
aggregation schemes include: single node, star, and full mesh
topologies [8]. In our work, we consider full mesh network
topology aggregation, in which border nodes within a domain
are connected in full mesh pattern using aggregated links. All
the aggregated links between the border nodes are mapped to
physical paths in the substrate network. For each aggregated
link, the topology aggregation scheme will also provide the
distance of the underlying path in the substrate network, but
will not provide detailed routing information of the underlying
path. We propose to extend the information provided in the
topology aggregation to also include information that will
assist in finding pairs of paths through a domain that have
minimum-area overlapping regions.

In this work, we consider two separate full-mesh topology
aggregations for each domain.

1) Primary Topology Aggregation: The first topology ag-
gregation maps each aggregated link between two border
nodes to the minimum distance path between those border
nodes. The total distance of the path is assigned as the
weight of the corresponding aggregated link in the topology
aggregation. The primary topology aggregation is used to
find a minimum-distance primary path in the inter-domain
topology. If an aggregated link in the primary aggregated
topology is selected for the primary path, we create a sec-
ondary aggregated topology.

2) Secondary Topology Aggregation: In this secondary
topology (also a full-mesh topology), each aggregated link
is mapped to a path in the domain that has a combination
of minimum distance and minimum overlapping area with the
path used for the primary path’s aggregated link. The approach
for calculating a minimum-overlap path is as follows:

Step 1: Let P ′ represent a set of physical links used in the
physical path of the aggregated link selected for the primary
path in the domain m, and let P represent a set of physical
links in the domain m, that are not in set P ′.

Step 2: Calculate the area of the overlapping region of
physical link e(i,j) ∈ P with the physical links in the primary
path, P ′.

Step 3: Set the weights of these physical links to We(i,j) ,
considering both the area of the overlapping region and the
distance:

We(i,j) = α× δ
(
e(i,j), ê(i′,j′)

)
+ (1− α)× dis

(
e(i,j)

)
, (9)

where α is a tradeoff parameter between the overlap area and
distance. dis(e(i,j)) is the distance of physical link e(i,j), and
δ(e(i,j), ê(i′,j′)) is the area of the overlapping region between
physical link e(i,j) and the physical path for the aggregated
link ê(i′,j′) used in the primary path.

Varying the value of parameter α, allows us to achieve a
trade-off between the distance of the secondary path and the
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Fig. 5. (a) Primary topology aggregation which is created by selecting the
minimum distance path between border nodes within a domain. (b) Secondary
topology aggregation which considers the combination of minimum distance
and sum of overlapping regions between border nodes within a domain.

area of the overlapping region of the secondary path with
the primary path. For lower values of α, shorter distance
paths are selected, and for higher values of α, paths with less
overlapping area are selected.

Step 4: Calculate the minimum distance paths between each
pair of border nodes in the domain m using the new metric
We(i,j) .

The aggregated topology information provided with the
secondary aggregated topology includes the distance of the
associated paths for each aggregated link and the area of the
overlapping region between the path for each aggregated link
and the path for the aggregated link used for the primary path,
as in Equation 8.

Note: If a domain is not used by the primary path, then
its secondary topology aggregation is the same as its primary
topology aggregation, and the area of the overlapping region
is zero.

An Example: Fig. 5 explains the concept of primary topol-
ogy aggregation and secondary topology aggregation between
a pair of border nodes for a given domain. Suppose a and d
are two border nodes within a domain. For simplicity, let us
assume the weights of the links to be the distances between
their endpoints. To create the primary topology aggregation
(Fig. 5 (a)), we find the minimum distance path between the
border nodes a and d, i.e. path a − b − c − d. Now, the
aggregated link weight is the distance of the shortest path
between the border nodes a and d which is 4. Now, suppose
that the aggregated link ê(a,d) is selected for the primary
path in the over-all inter-domain topology. We construct a
secondary topology aggregation of this domain by considering
paths that minimize a combination of distance and area of
the overlapping region with the path used for aggregated link
ê(a,d) in the primary topology aggregation (shown as gray
region in Fig. 5 (b)). The aggregated link weight after the
secondary aggregated topology is a linear combination of the
path distance and the overlapping area with the primary path.

B. Path Selection

Once the topology aggregation is provided, we consider
the problem of finding two inter-domain paths over the inter-
domain topology. To calculate the primary path between
a source node and a destination node in the inter-domain
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network, we construct an inter-domain topology consisting
of the primary aggregated topologies of each domain, with
the weight of the aggregated links set as the distance of the
underlying paths. We then find the minimum distance path in
the inter-domain topology and set this as the primary path.

For the secondary path calculation, we determine the sec-
ondary aggregated topologies of each domain based on the
aggregated links selected by the primary path in each domain.
An inter-domain topology is constructed by combining these
secondary aggregated topologies, and the weight of the aggre-
gated links are set to Ŵê(i,j) .

Ŵê(i,j) = β× δ
(
ê(i,j), ê(i′,j′)

)
+ (1− β)× dis

(
ê(i,j)

)
, (10)

where β is the tradeoff parameter between overlap area and
distance, similar to α. δ(ê(i,j), ê(i′,j′)) is the area of the
overlapping region between the physical path for aggregated
link ê(i,j) and the physical path for the aggregated link used
for the primary path ê(i′,j′). dis(ê(i,j)) is the distance of the
physical path for the aggregated link ê(i,j). We then find
our backup path based on this new inter-domain topology by
calculating minimum distance paths based on Ŵê(i,j) for all
aggregated links. We assume that the connection fails if either
source or destination is in the disaster area. Solutions involving
higher-layer data-backup may be utilized in these cases.

For the case in which the epicenter of the failure is
uniformly distributed over the network plane, the probability
of simultaneous failure of the primary and backup path is
proportional to the overlapping area of the two paths. But
when the probability distribution of the failure epicenter has
a non uniform distribution, then in this case the weight of the
aggregated links are set to be:

Ŵê(i,j) = β× γ
(
ê(i,j), ê(i′,j′)

)
+ (1−β)×dis

(
ê(i,j)

)
. (11)

C. Complexity

Let V be the number of vertices in a domain, D be the
number of domains and E be the number of edges in a domain.
Creating a primary aggregated topology for a domain could
be done by using all pair shortest paths for every border node,
i.e. O(V 3) in the worst case. Finding the primary aggregated
topology for all domains would take O(DV 3) steps. Finding
the primary path over the primary aggregated topologies would
take O(E + V log V ), using Dijkstra’s algorithm. To create
a secondary aggregated topology we consider the domains
iterated by the primary path. We first construct vulnerable
zones around every edge eij ∈ E within a domain, which
takes O(EN2), where N2 is number of grid points within a
domain. For each grid point we calculate it’s distance from
every edge eij ∈ E to get the overlapping with the primary
path, which takes O(EN2) steps. Then we need O(DV 3)
steps to calculate all pair shortest path based on distance
and overlapping area. Thus, creating secondary aggregated
topology takes O(DN2E + DV 3). At last, the secondary
path calculation could be done using Dijkstra’s algorithm
again, i.e. O(E + V log V ), on the secondary aggregated
topologies. Thus the overall complexity of this algorithm could
be O(DV 3 +DN2E). Assuming D � V , the complexity is
O(V 3 +N2E).
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Fig. 6. A 30 node US topology for inter-domain connections.

IV. NUMERICAL EVALUATION

A. Network Settings

For numerical evaluation of our approach, we consider a
modified version (i.e. nodes are replaced by domains) of a 30
node US topology (Fig. 6) for inter-domain connections [18].
We then consider randomly-generated 10 node topologies for
the intra-domain topologies (with a degree of 2-4 for each
node). We assume that the area of each domain is 80×80 km2,
so that no domains in the network overlap. (X,Y ) coordinates
of the 30 inter-domain nodes indicate the location of the
center of the domains. Intra-domain coordinates are generated
randomly within a network plane within a given distance of
the center of the domain. Intra-domain link distances ranges
from 50 to 70 kilometers and inter-domain link distances are
determined by the coordinates in the 30 node topology, which
are much higher than intra-domain link distances. We generate
1000 random source and destination (s, d) pairs over a fixed
network topology, to include (s, d) pairs with different distance
between them. Primary and backup paths are calculated using
the aggregated topologies. We ignore the connection if no
backup path exists for some (s, d) pair. We assume parameter
α = β for Fig. 7 to Fig. 15. Simulations were also run for
cases in which α 6= β, and similar trends were observed.

B. Experiments and Results

1) Network with Uniform Distribution of Failure location:
We compare the Minimum Overlap Area Routing Algorithm,
denoted by MOA in Fig. 7, with Suurballe’s Algorithm SUR
[19], which is used to compute two link disjoint paths be-
tween source s and destination d over the primary aggregated
topologies using only distance information. We also compare
the MOA algorithm to another heuristic called Full Information
Algorithm in which we assume complete domain information
is exchanged with other domains, and there is no construction
of aggregated topologies. The Full Information Algorithm will
select a minimum-distance primary path and will select a
backup path with minimum overlapping area from the primary
path. We perform this experiment at α values 0.95, 0.5, and
0.0 for the MOA algorithm. Fig. 7 shows that the overlapping
area of the primary path and backup path increases with an
increase in the radius of failure. As the radius increases,
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Fig. 7. Total overlapping area of primary and backup path as in Eq. 5 versus
the radius of failure in kms, for uniform distribution of the failure epicenter.
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Fig. 8. Total distance of primary and backup path versus radius of failure in
kms, for uniform distribution of the failure epicenter.
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Fig. 9. Probability of simultaneous failure (PA) of primary and backup path
versus the radius of failure in kms, for uniform distribution of the failure
epicenter.

the V Ze(i,j) around each edge increases, and thus, finding
a completely non-overlapping path becomes difficult. Our
results also show that the MOA algorithm outperforms the
SUR algorithm with respect to minimizing the overlapping area
and is very comparable to the Full Information solution. In
the same experiment, we also compare the overlapping area
values of primary and backup paths for different α values
for the MOA algorithm. As we increase the value of α, the
overlapping area for primary and backup paths decreases. For
α = 0, the weights of the aggregated links are based only on

the distance, and thus, the total overlapping area is greater.
Next, we compare the three algorithms with respect to the

total distance of the resulting paths. In Fig. 8, the total distance
for the SUR algorithm is constant because it doesn’t consider
the area of the overlapping region. For the MOA algorithm, the
distance increases with increase in radius because an increase
in radius leads to an increase in V Ze(i,j) for each link. For the
Full Information Algorithm, the distance is the highest because
it tries to calculate the most disjoint path from the primary
path in the network. We also plot the total distance (i.e. total
distance of primary and backup path) for different values of
α as in the previous experiment. For the MOA algorithm, the
distance increases gradually with increase in radius because
an increase in radius leads to an increase in V Ze(i,j) for each
link. For high values of α, the algorithm gives more preference
to disjointness of area rather than minimizing distance, to
provide a more survivable pair of paths. Thus, to minimize
the total overlapping area, the backup path may traverse a
greater number of inter-domain links, resulting in an increase
in distance.

For the low values of α, the algorithm gives more preference
to distance effectiveness rather than disjointness. When α = 0,
the total distance does not change with radius because the
MOA algorithm will only calculate the backup path consid-
ering the distance, without considering the overlapping area
of the two paths. Also, note that, for α = 0.5 and α = 0,
the total distance of the primary and backup paths is lower
than that for the SUR algorithm. Since MOA doesn’t require
that the primary and backup paths are completely link-disjoint,
the backup path may share some links with the primary
path, leading to lower overall distance. In Fig. 9, we obtain
probability of simultaneous failure for primary and backup
paths for the same set of algorithms as above. We observe
an increase in probability of simultaneous failure with the
radius, because for the uniform distribution of the location
of epicenter, the probability of simultaneous failure is directly
proportional to the overlapping area.

For the next experiment, we consider three different intra-
domain topologies with 3, 10, and 14 nodes. Intra-domain
distances ranges from 50 to 70 kilometers with a degree of 2
to 4 for each node. The inter-domain topology is the same 30
nodes topology [18]. In Fig. 10, we compute the overlapping
area between primary and backup paths, for a range of values
of α. We observe that the overlapping area increases as the
intra-domain topologies become denser. This happens because
in a denser topology, the vulnerable zones around each edge
overlap with the vulnerable zones of other edges, and this
increases the total overlapping area of two paths. For the same
reason, in a denser topology we observe more variation in the
overlapping area with the change in α as compared to sparse
topologies. In Fig. 11, we evaluate the total path distance for
the MOA algorithm in the three topologies. We observe that
the total distance increases with the increase in number of
intra-domain nodes for each domain. We also observe gradual
increase in the total distance for each topology with the radius,
for the same reason as mentioned for Fig. 8.

2) Network with Non-Uniform Distribution of Failure loca-
tion: In this section of the evaluation, we obtain the intensity
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Fig. 10. Total overlapping area comparison for three intra-domain topologies
(for α = 0.95, 0.5, 0.0) v/s radius in kms.
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Fig. 11. Total distance comparison for three intra-domain topologies (for
α = 0.95, 0.5, 0.0) v/s radius in kms.

values of the location coordinates in the network from the
hazard map. A way to implement this is to place the coordi-
nates of the 30 node network topology on the map and then
normalize the distance between two nodes in terms of pixel
distance between their coordinate points.

In the comparison of the Minimum Overlap Area Routing
Algorithm, denoted by MOA in Fig. 12 and Fig. 13, we observe
similar trends compared to the case with uniform distribution
of the failure epicenter. The total overlapping area of the
primary path and the backup path for MOA, SUR, and Full
Information algorithm increases with an increase in the radius
of failure. The total distance for SUR is constant, while for the
MOA algorithm and the Full Information algorithm it increases
as before.

Fig. 14 gives a comparison between the probability of
simultaneous failure for the three algorithms versus radius for
different values of α. We observe, with an increase in the value
of α, the probability of simultaneous failure decreases. Also
there is an increase in the value of probability of simultaneous
failure with an increase in radius. For MOA at α = 0, the
weights of the aggregated links are based only on the distance,
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Fig. 12. Total overlapping area of primary and backup path as in Eq. 5
versus the radius of failure in kms, for non-uniform distribution of the failure
epicenter.
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Fig. 13. Total distance of primary and backup path versus radius of failure
in kms, for non-uniform distribution of the failure epicenter.

20 30 40 50 60 70 80

 Radius in kilometers

10
-3

10
-2

10
-1

10
0

 P
ro

b
ab

il
it

y
 o

f 
S

im
u

lt
an

eo
u

s 
F

ai
lu

re

 Full Information

 SUR

 MOA( =0.95)

 MOA( =0.5)

 MOA( =0.0)

Fig. 14. Probability of simultaneous failure (PA) of primary and backup path
versus the radius of failure in kms, for non-uniform distribution of the failure
epicenter.

and thus, the probability of simultaneous failure is greater than
other values of MOA algorithm.

V. DISCUSSIONS

A. Modeling of general shaped failure

Our discussion in this work is limited to one circular shape
disaster which could occur anywhere in the network plane
under both uniform and non-uniform epicenter location. A
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Fig. 15. Probability of Simultaneous Failure when network is designed based
on values of the radius that are smaller or larger than the actual failure radius.

more general scenario where the shape of the disaster is not
circular may be more difficult to evaluate.

If the shape of the failure is deterministic and known, and
if the location of the failure is distributed over the network
plane according to density function f(x, y), then we can use
similar techniques as above to identify the vulnerable zones
of each edge and path, and to integrate f(x, y) over the
overlapping vulnerable regions to determine the probability
of simultaneous failure.

An alternative approach to deal with general shaped geo-
graphic failures is to consider a discrete set of failure events,
each with a defined shape. In this case, each failure affects a
known set of links, which can be specified as a shared-risk
link group, and existing SRLG-based approaches can be used
to address the problem.

On the other hand, if the shape of the failure has some
random distribution, then the set of affected links cannot be
determined by simply considering the location of the epicenter.
In this case, for each link or path, one would need to consider
the set of all possible failure locations that may potentially
impact the link or path, and, for each of these failure locations,
determine the probability that the failure will affect the given
link or path based on the distribution of the shape of the failure.

B. Selection of radius for network design

The proposed algorithm assumes a given radius for a failure.
If the actual radius of a failure differs from the radius assumed
by the algorithm, the cost and robustness of the solution
may be affected. In this section, we evaluate the effect of
selecting a failure radius that differs from the actual radius
of failure. For the experiment in Fig. 15, we select an actual
value of failure radius (40 km), and we test for the cases
in which the algorithm assumes values of the radius that
are smaller or larger than the actual failure radius. If the
network design radius is less than the actual radius value, the
network will compromise in robustness, i.e. the probability of
simultaneous failure will be more. If design radius is more
than the actual value of radius, we end up with longer paths,
but the probability of simultaneous failure is reduced. Thus,
the selection of design radius offers a trade-off between cost
and robustness.
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Fig. 16. Probability of Simultaneous Failure for MOA, Full Information,
OPT-PAIR, OPT-BACKUP, for a small network.

C. Tractability for small network size

Although the problem of finding two paths with minimum
overlapping area is NP-complete, it may be possible to find
an optimal solution to the problem by exhaustively searching
over all possible simple paths between a source s and a
destination d, and selecting the pair of paths that results in
the minimum overlap. We refer to this solution as OPT-PAIR.
Alternatively, if the primary path is given, then the optimal
backup path can be found by exhaustively searching over all
possible simple paths between s and d, and selecting the path
that has minimum overlap with the given primary path. This
solution is referred to as OPT-BACKUP. OPT-PAIR and OPT-
BACKUP can be implemented using a variation of depth first
search, resulting in complexity O(EN2(V !)2) for OPT-PAIR
and O(EN2V !) for OPT-BACKUP, where V is the number
of nodes, E is the number of edges, and N2 is the number
of grid points. EN2 is the time to calculate the overlapping
area between two paths, and V ! is the worst-case number
of simple paths between a pair of nodes. Fig. 16 shows a
comparison between the MOA algorithm, the Full Information
Algorithm, OPT-PAIR, and OPT-BACKUP in a small graph.
We consider a three-domain inter-domain topology with three
intra-domain nodes in each domain. MOA first calculates the
primary path based on the primary aggregated topologies,
then it attempts to find a back-up path that has minimum
probability of simultaneous failure with the primary path.
The Full Information algorithm first calculates the primary
path based on the global topology with full information, then
attempts to find a backup path with minimum overlap with the
primary path over the global topology.

Note that, since MOA, Full Information, and OPT-BACKUP
set the initial primary path based on distance, these solutions
have a higher probability of simultaneous failure compared
to OPT-PAIR, which considers every possible pair of paths.
Also, Full Information has performance that is close to that
of the OPT-BACKUP solution. Thus, most of the gap between
MOA and the optimal solution is due to the lack of complete
information when dealing with multiple domains.

VI. CONCLUSION

We addressed an important aspect of survivability in multi-
domain optical networks with geographically correlated fail-
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ures. We formulate probabilistic model based on the non-
uniform and uniform probability distribution of the epicenter
location. We developed a topology aggregation scheme provid-
ing information about geographic distances between links in
each domain and use this information to provision primary and
backup paths, such that these paths are less likely to fail during
the same geographically correlated failure event. We observe
that numerical evaluations discussed in this paper indicate
the effectiveness of our approach in terms of probability of
simultaneous failure and total distance.
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