
Fog Computing: Towards Minimizing Delay in
the Internet of Things

Ashkan Yousefpour, Genya Ishigaki, and Jason P. Jue
Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080

Email: {ashkan, gishigaki, jjue}@utdallas.edu

Abstract—With the Internet of Things (IoT) becoming a major
component of our daily life, understanding how to improve qual-
ity of service (QoS) in IoT networks is becoming a challenging
problem. Currently most interaction between the IoT devices
and the supporting back-end servers is done through large scale
cloud data centers. However, with the exponential growth of IoT
devices and the amount of data they produce, communication
between “things” and cloud will be costly, inefficient, and in
some cases infeasible. Fog computing serves as solution for this
as it provides computation, storage, and networking resource for
IoT, closer to things and users. One of the promising advantages
of fog is reducing service delay for end user applications, whereas
cloud provides extensive computation and storage capacity with
a higher latency. Thus it is necessary to understand the interplay
between fog computing and cloud, and to evaluate the effect of fog
computing on the IoT service delay and QoS. In this paper we will
introduce a general framework for IoT-fog-cloud applications,
and propose a delay-minimizing policy for fog-capable devices
that aims to reduce the service delay for IoT applications. We
then develop an analytical model to evaluate our policy and show
how the proposed framework helps to reduce IoT service delay.

I. INTRODUCTION

The Internet of Things (IoT) is likely to be incorporated
into our daily life, in areas such as transportation, healthcare,
industrial automation, smart home, and emergency response.
The IoT enables things to see and sense the environment, to
make coordinated decisions, and to perform tasks based on
these observations [1]. In order to realize the full benefits of
the IoT, it will be necessary to provide sufficient networking
and computing infrastructure to support low latency and fast
response times for IoT applications. Cloud Computing has
been seen as the main enabler for IoT applications with its
ample storage and processing capacity. Nonetheless, being
far from end-users, cloud-supported IoT systems face several
challenges including high response time, heavy load on cloud
servers and lack of global mobility.

In the era of Big Data, it may be inefficient to send
the extraordinarily large amount of data that swarms of IoT
devices generate to the cloud, due to the high cost of com-
munication bandwidth, and due to the high redundancy of
data (for instance, constant periodic sensor reading). Instead
of moving data to the cloud, it may be more efficient to
move the applications and processing capabilities closer to
the data produced by the IoT. This concept is referred to as
“data gravity,” and fog computing is well suited to address this
matter.

Fog computing is a newly-introduced concept that aims
to put the cloud closer to the end users (things) for better
quality of service [2], [3]. Fog computing is an intelligent
layer sitting between cloud and IoT, that brings low latency,
location awareness, and wide-spread geographical distribution
for the IoT. Inheriting main concepts of cloud computing, fog
provides computation, storage, and networking services to end-
users, but at the edge of the network. Despite the countless
benefits of fog, the research in this field is still immature, and
many researchers still are working on defining vision, basic
notions, and challenges of fog computing [2]–[5].

An open research challenge is to explore the potential
benefits of fog computing. In other words, one must study
how quality of service will be improved by having a layer
of fog nodes between IoT and the cloud. Recent work in [6]
addressed the design of a policy for assigning tasks that are
generated at mobile subscribers to edge clouds, to achieve
a power-delay trade-off. Despite their solid contributions, the
proposed approach is limited to the cellular network infrastruc-
tures. It assumes an IoT device can be only a User Equipment
(UE), and that edge servers must be attached to base stations.
Additionally, by not considering the cloud in the approach,
scenarios where IoT-cloud or fog-cloud communication takes
place are not handled.

In a similar study to the above work, the authors in [7] study
base station association, task distribution, and virtual machine
placement in fog-computing-supported medical cyber-physical
systems. They study the mentioned three issues, while min-
imizing the overall cost and satisfying QoS requirements.
Although the paper has strong contributions, the suggested
scheme cannot be generalized to IoT-fog-cloud scenarios, as it
is based on the cellular network architecture. The scheme lacks
the cloud entity, fog nodes are assumed to co-locate with base-
stations, and there is no computation offloading capability.

Another effort is the work in [8] that addresses power-delay
trade-off in cloud-fog computing by workload allocation. This
scheme is similar to that of [6] in the sense that it tries to
achieve a power-delay trade-off in edge clouds. The authors
mathematically formulate the workload allocation problem
in fog-cloud computing; yet, they use fairly simple models
to formulate power consumption and service delay. More
recent work in [9] also focuses on theoretical modeling of
fog computing architectures, specifically, service delay, power
consumption, and cost. Similarly, service delay and power
consumption are formulated in basic models, and no policy

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

is introduced for minimizing service delay.
In this work we introduce a common sense general frame-

work to understand, evaluate and model service delay in the
IoT-fog-cloud application scenarios. We then propose a delay-
minimizing policy for fog nodes whose goal is to minimize
service delay for the IoT nodes. In contrast to the existing
work in the literature, the proposed policy employs fog-to-fog
communication to reduce the service delay by sharing load.
For computation offloading, the policy considers not only the
queue length, but also different request types that have variant
processing times. Additionally, our scheme is not limited to
any particular architecture (like cellular network), and IoT, fog,
and cloud nodes are not restricted to be of any type or capacity.
We also develop an analytical model to evaluate service delay
in the IoT-fog-cloud scenarios in detail and perform extensive
simulation studies to support the model and the proposed
policy.

The rest of this paper is organized as follows. We introduce
our IoT-fog-cloud framework in Section II and propose the
policy for reducing IoT service delay in Section III. We
then formally introduce the analytical model for evaluating
IoT service delay and its components in Section IV, and
explain the numerical results of our experiment in Section V.
Finally, Section VI summarizes the paper and provides future
directions of this work.

II. GENERAL IOT-FOG-CLOUD MODEL

Fig. 1 illustrates a general framework for an IoT-fog-cloud
architecture that is considered in this work. There are three
layers in this architecture: things layer, where the “things” and
end-users are located, fog layer, where fog nodes are placed,
and cloud layer, where distributed cloud servers are located.
A cloud server can be composed of several processing units,
such as a rack of physical servers or a server with multiple
processing cores. In each layer, nodes are divided into domains
where a single IoT-fog-cloud application is implemented.

For instance, a domain of IoT nodes (in a factory, for
instance) is shown in dark green, and they communicate with
a domain of fog nodes associated with the application. A
domain of IoT nodes could comprise things in a smart home,
temperature sensors in a factory, or soil humidity sensors in
a farm where all the things in the vicinity are considered to
be in a single domain. Normally the fog nodes in one domain
are placed in close proximity to each other, for example, in
a single zip-code or in levels of a building. Each domain
of fog nodes is associated with a set of cloud servers for a
single application. We will not pose any restrictions on the
topology (any topology is allowed), except for this logical
layered architecture, as this will make the model easy to
present.

The basic way in which IoT nodes, fog nodes, and cloud
nodes operate and interact is as follows. IoT nodes can process
requests locally, send it to a fog node, or send it to the cloud;
fog nodes can process requests, forward requests to other fog
nodes in the same domain, or forward the requests to the cloud;
cloud nodes process requests and send the response back to

Fig. 1. General framework for IoT-fog-cloud architecture. Each layer is
partitioned into domains where a single application is implemented.

the IoT nodes. In this work, the aim is to minimize service
delay for IoT devices in the proposed framework based on fog
computing. The fog layer lies between IoT devices and cloud,
so that it could handle majority of IoT service requests, to
reduce the overall service delay.

Definition 1. service delay for an IoT node is the time required
to serve a request, i.e. the time interval between the moment
when an IoT node sends a service request and when it receives
the response for that request.

We first introduce the delay-minimizing policy in the fol-
lowing section, then formulate the IoT service delay to eval-
uate the policy analytically.

III. FOG NODE COLLABORATION POLICY

In this section, we introduce the framework in which fog
nodes collaborate with each other to fulfill the requests sent
from IoT nodes to the fog layer. If a fog node can accept
a request based on its current load, it processes the request;
however, when the fog node is busy processing many tasks, it
may offload the request to some other fog nodes or to the cloud
(this is called Load Sharing). The concept of Load Sharing
is well studied in the literature [10], [11], and we borrow
similar concepts for the design of the policy by which fog
nodes collaborate. This collaboration is discussed in details
the following subsections.

A. When to Offload a Task

In this subsection, we discuss the decision fog nodes make
for processing or offloading a task to other fog nodes. The con-
cept of computation offloading for mobile devices is studied
in [12], [13], and a number of possible policies are discussed
(based on energy consumption, response time, availability,
etc.). In our scheme, the decision to offload a task is based
on the response time of a fog node, which depends on several
factors: the amount of computation needed to be performed on
a task, and the queueing status (in terms of current load) and
processing capability of a fog node. In particular, we propose a
model that takes into account the different processing times of
different individual tasks. In other words, in our model there

Estimated
Waiting Time
< Threshold

(Wj < θj)

Place request in queue
Update Waiting Time

Nfwd = eM
or

All neighbors
visited

Increment Nfwd of request
Forward to best neighbor

Request received

Yes

No

No

Yes
Forward to cloud

Fig. 2. Policy of Fog node j for handling received requests.

will be distinction between heavy processing tasks and light
processing tasks.

We assume requests have two types: type Light (light
processing) with an average processing time of zj at the fog
node j and Zk at the cloud server k, and type Heavy (heavy
processing) with an average processing time of z′j at the fog
node j and Z′k at the cloud node k. For example, requests
sent by temperature sensors to fog nodes for calculating the
average room temperature can be seen as light processing
tasks. Similarly, a license plate reading request in a recorded
video of a vehicle, sent by a traffic camera to fog nodes is
an example of heavy processing task. Note that, in general,
more than two task types could be considered; however, in
this paper, we only consider two task types for the simplicity
of the presentation.

The procedure of processing or forwarding requests by fog
nodes is shown in Fig. 2. When a fog node receives a request,
it first checks the estimated waiting time of tasks in the queue.

Definition 2. Estimated waiting time (W) is the sum of
the estimated processing delays of the requests in the queue
(queueing delay), plus the estimated processing delay of the
request under service.

A method for estimating processing times and hence waiting
time of the tasks in the queue is discussed in Section III-D.
If the estimated waiting time is smaller than a threshold θj
at fog node j, the fog node will accept the task. The task
enters the queue and the estimated waiting time is updated.
If not, the fog node offloads this request, either to one of its
neighbors, or to the cloud. If the number of times the request
has been offloaded (Nfwd) is less than the offload limit eM for
domain M (domain where fog node j belongs), the request
will be forwarded to a neighboring fog node. If not, it will be
forwarded to the cloud.

The value of θj depends on the incoming traffic pattern
from IoT nodes to fog nodes in a domain. In general, if all
fog nodes have low load, offloading is unnecessary; and if all
fog nodes have heavy load, offloading will not help reducing
the delay significantly. Offloading helps when there is a high
degree of variance in the load among fog nodes. The value
of θj could be adjusted in implementation based on the given
traffic demands, to reach an optimal value that minimizes the
average service delay.

TABLE I
TABLE OF NOTATIONS

di Service delay for an IoT node i
dmax
i Maximum delay allowed by application for IoT node i
pIi Probability that IoT node i processes its own request
pFi Probability that IoT node i sends its request to fog layer
pCi Probability that IoT node i sends its request to the cloud

XLL′
st

Propagation delay from node s in layer L to node t in
layer L′, where s, t ∈ {i, j, k} and L,L′ ∈ {I, F, C}

Y LL′
st

Sum of all transmission delays on links between node s
in layer L to node t in layer L′, where s, t ∈ {i, j, k}
and L,L′ ∈ {I, F, C}

Ai
Average processing delay of IoT node i to process its
own request

Lij

Delay of processing and handling requests of IoT node i
in the fog layer (and possibly the cloud layer), where fog
node j is the fog node to which IoT node i initially
sends its request (Lij = Lij(0))

Lij(x)
Delay of processing and handling requests of IoT node i
in fog layer (and possibly cloud layer), by fog node j
during the x’th offload in the fog layer

SL
Λ

Set of nodes in domain Λ at layer L, where
(L,Λ) ∈ {(I,P), (F,M), (C,N)}

SL
⋃

Λ S
L
Λ : set of nodes (in all domains) at layer L

Hk Average delay for handling the request at cloud server k
ςi Average size of request data that IoT node i generates
bi Probability that a generated request at IoT node i is Light
Wj Estimated waiting time of fog node j

Pj
Probability that an incoming request is accepted by fog
node j

θj Offloading threshold at fog node j
eM Maximum offload limit at the fog layer in domain M

B. Modes of Interaction

We propose two modes of interaction for fog nodes: one
mode is centralized, in which a central authority controls the
interaction of fog nodes, and the other one is distributed, where
fog nodes interact with their neighboring fog nodes using a
universal protocol.

In centralized mode of interaction, in each domain of fog
nodes there is a Central Node that controls the interaction
among the fog nodes in that domain. In particular, based on
the current condition of their queue, fog nodes in domain M
report their estimated time to process the requests in queue and
in service (i.e. estimated waiting time) to the Central Node of
domain M.

The Central Node of domain M announces the estimated
waiting time of the fog nodes in domain M to their neigh-
boring fog nodes in domain M. Upon reception of estimated
waiting times from Central Node, fog nodes record them in
a Reachability table they maintain. The Reachability table
is a table that fog nodes utilize when making decision as
to which fog node to offload a request for processing. The
Reachability table has three columns as it is shown in Table
II. The information in the Reachability table of a fog node in
domain M is updated by both the Central Node of domain
M and the fog node itself; the Central Node announces the
estimated waiting times of neighboring fog nodes, and the
fog nodes measure the propagation delay between themselves.
An efficient way to estimate the waiting time of fog nodes is
discussed in Section III-D.

TABLE II
AN EXAMPLE OF REACHABILITY TABLE OF FOG NODE

Propagation Delay (µs) Est. Waiting Time (µs) Node ID
450 250 129.110.83.81
300 365 129.110.5.75 *

...
...

...

Using estimated waiting time and propagation delay in the
Reachability table, each fog node selects a fog node from
among its neighbors as the best fog node. It does so by
selecting a neighboring fog node in the same domain with
the smallest estimated waiting time plus propagation delay.
The best fog node’s ID is marked with star * in Table II.

In the distributed mode of interaction, no Central Node is
present in a domain; instead, fog nodes in domain M run a
protocol to distribute their state information (estimated waiting
time) to the neighboring fog nodes in the same domain. Each
fog node maintains the Reachability table using the estimated
waiting time it receives from neighboring fog nodes, and the
propagation delay it measures from itself to them. Similar to
central mode of interaction, a fog node always selects the
best neighbor with the smallest estimated waiting time plus
propagation delay.

Comparison: Central mode of interaction can be seen as
central resource orchestration, where the Central Node is
knowledgeable of the topology and the state of the fog nodes
in a domain. Inherently, central mode of interaction is easier to
implement, because there is no need for a distributed commu-
nication protocol among fog nodes; all the procedures of the
estimated waiting time announcements will be implemented
on the Central Node. Moreover, the Central Node could be
used as a means to push fog applications and updates to the
fog nodes in a domain.

On the other hand, distributed mode is more suitable for
scenarios in which fog nodes are not necessarily static, or
when the fog network is formed in an ad hoc manner.
Furthermore, in distributed mode there is no need to have a
dedicated node to act as the Central Node, which is a reduction
in the cost of deployment and less vulnerable to a single point
of failure. For the purpose of this paper and our simulation
studies, we have chosen the distributed mode of interaction,
since our policy only needs to announce estimated waiting
time updates, which is fairly easy to implement on fog nodes.

C. Finding Best Neighbor

Propagation delays are given to fog nodes as input parame-
ters. Depending on the mode of interaction, upon receiving an
estimated waiting time sample either from the Central Node
or another fog node, the fog node updates the corresponding
estimated waiting time in the Reachability table. As mentioned
above, a fog node selects as its best neighbor the fog node for
which the estimated delay for the current request is minimal.

When a request is offloaded to the fog node’s best neighbor,
it undergoes the corresponding propagation delay to reach the
best neighbor, and if it enters the best neighbor’s queue, it

spends time roughly equal to the estimated waiting time of the
best neighbor, before it finishes processing at that neighbor. If
the request does not enter the queue of the fog node’s best
neighbor, then the request needs be offloaded again (multiple
offloads are possible when neighboring fog nodes are busy
with requests).

We assume that link rates between fog nodes in one domain
are the same; hence we did not include transmission delays
in the Reachability table. However, if the link rates between
fog nodes are different, transmission delay could be included
as a column in the Reachability table for better selection of
best neighbor. It is worth mentioning that when the fog nodes
are mobile, they need to frequently measure the propagation
delay and update the corresponding propagation delay in the
Reachability table.

D. Checking and Updating Queue Status

When fog nodes receive requests from IoT nodes that
participate in an application, they need to distinguish between
type Light and type Heavy requests, in order to update the
queue parameters. To address this, we assume that requests
have in their header a field that identifies the type of the
request (for instance Traffic Class field in IPv6 header). The
application hence sets that field in header of the packets being
generated from IoT nodes.

Fog nodes always need to know an estimate of the current
total processing time of the tasks in their queue (i.e. estimated
waiting time), both for when they need to make offloading
decisions, and when reporting their estimated waiting time to
neighboring fog nodes. A possible method for estimating the
waiting time is for the fog node to store an estimate of the
current waiting time of the tasks in the queue as a parameter.
Upon arrival to or departure from the queue, the fog node
simply updates the estimated waiting time of the tasks in the
queue.

To calculate the estimated waiting time of the tasks in the
queue W , fog node j periodically measures processing times
of recently processed tasks (new zj) and update the estimated
processing time of each task type (zj). For light processing
tasks, we have zj = (1 − α) × zj + α × new zj (a similar
equation holds for heavy processing tasks). This equation is
a weighted average that maintains a weight of α for new
measured processing times and a weight of 1− α for the old
measurements (current estimate).

To obtain the total processing time of the tasks in the queue
on the fly, fog node j stores the current number of type Light
and Heavy requests in the queue cj and c′j , respectively, in
addition to zj and z′j . Fog node j then multiplies the estimated
processing time of each task type by the number of tasks of
that type in the queue. In other words, the estimated waiting
time W of the fog node j will be

Wj = cj × zj + c′j × z′j . (1)

IV. ANALYTICAL MODEL

In this section, we introduce the analytical model to evaluate
the service delay in the proposed architecture.

A. Service Delay

Recall that IoT nodes process requests locally, send it to a
fog node, or send it to the cloud. Thus, service delay di for
an IoT node i can be written as:

di = pIi × (Ai) + pFi × (XIF
ij + Y IFij + Lij)

+pCi × (XIC
ik + Y ICik +Hk +XCI

ki + Y CIki);

j = f(i), k = g(i), (2)

where pIi is the probability that the IoT node i processes its
own request at the things layer, pFi is the probability of sending
the request to the fog layer, and pCi is the probability that the
IoT node sends the request directly to the cloud; pIi + pFi +
pCi = 1. Ai is the average processing delay of the IoT node i
when it processes its own request. XIF

ij is propagation delay
from IoT node i to fog node j, Y IFij is sum of all transmission
delays on links from IoT node i to fog node j. Similarly, XIC

ik

is propagation delay from IoT node i to cloud server k, Y ICik
is sum of all transmission delays on links from IoT node i
to cloud server k. XCI

ki and Y CIki are the propagation and
transmission delays from cloud server k to IoT node i.

The transmission and propagation delay from the fog layer
to IoT node i will be included in Lij , since the request may
be further offloaded to a different node in the fog layer (more
details in Section IV-D).
Lij is the delay for processing and handling requests of IoT

node i in the fog layer (and possibly cloud layer, if fog nodes
offload the request to the cloud), where fog node j is the first
fog node to which IoT node i initially sends its request. Note
that fog node j might offload the request to another fog node or
to the cloud, and that all the corresponding incurred delays are
included in Lij . Hk is average delay for handling the request
at the cloud server k, which consists of the queueing time at
the cloud server k plus the processing time at the cloud server
k. (Lij and Hk will be discussed in further detail in Sections
IV-D and IV-F respectively).
f(i) and g(i) are mapping functions that indicate the fog

node j and cloud server k to which IoT node i sends its
requests, respectively. For instance, if in an application, IoT
node i always sends its requests to fog node j∗ in the fog
layer, then f(i) = j∗. In another scenario if IoT nodes always
send their requests to the closest fog node in the fog layer,
then f(i) = arg minj X

IF
ij , which translates to the index of

the fog node with smallest propagation delay (distance) from
IoT node i.

To formalize the problem further, let us define an IoT-fog-
cloud application Ψ. In the rest of this work all the equations
are defined on a single application Ψ(N ,M,P).

Definition 3. IoT-fog-cloud application Ψ is an application
on domain N of cloud servers, domain M of fog nodes
and domain P of IoT nodes, and is written as Ψ(N ,M,P).
Examples of Ψ are: video processing, temperature sensor
reporting, traffic road analysis, and oil rig pressure monitoring.

We do not assume any particular distribution for pIi , pFi ,
and pCi , since their values will be defined by individual

applications and based on QoS requirements and policies. In
other words, their values will be given to this framework as
input.

By using the model to evaluate the service delay for the
IoT nodes in one application domain, our goal is to minimize
delay through the definition of policies for exchanging requests
between IoT nodes, fog nodes, and cloud nodes. We formally
state the above as the minimization of the average service
delay of IoT nodes in domain P , under the condition that
every service delay di is smaller than a threshold dmax

i , or

min
1

|SIP |
∑
i∈SI

P

di

subject to di < dmax
i : ∀i ∈ SIP , (3)

where SIP denotes the set of IoT nodes that are in domain P .
If an application requires one delay threshold dmax for all IoT
nodes, then ∀i, dmax

i = dmax.
In the following subsection, we will discuss in more details

the components of the service delay equation.

B. Propagation and Transmission Delays

In Equation (2) we have the IoT-cloud delay terms XIC
ik ,

Y ICik , XCI
ki , Y CIki when the IoT node sends its requests directly

to the cloud layer. These terms are effective in the equation in
cases where the application Ψ is not implemented in the fog
layer (SFM = {}), or when the request has to be sent to the
cloud for archival purposes, or when there is no fog layer and
the IoT node communicates directly to the cloud.

Recall that Y IFij is the sum of all transmission delays on
the links from IoT node i to fog node j. If IoT node i and
fog node j are l-hop neighbors, we will have

Y IFij =
∑
l

ςi
Rl
. (4)

where ςi is the average size of request data that IoT node
i generates, and Rl is the transmission rate of the l’th link
between IoT node i and fog node j. The expanded equations
for transmission delays between other layers (Y ICik , Y FCjk , etc.)
are derived similar to Y IFij .

C. Processing Delay of IoT node

As explained in Equation (2), for IoT node i, the average
processing delay is Ai. If bi denotes the probability that a
generated request at IoT node i is type Light, and b′i = 1− bi
is the probability that a generated request at IoT node i is type
Heavy, Ai could be written as

Ai = bi × ai + b′i × a′i, (5)

where ai is the average processing time of requests of type
Light at IoT node i, and a′i is the average processing time
of requests of type Heavy at IoT node i. If IoT node i is of
type Light (or type Heavy), i.e. it only generates type Light
(or type Heavy) requests, bi = 1 (or bi = 0) and Ai = ai (or
Ai = a′i). Should more than two types of tasks be considered,
the equation above (and other equations with two task types)
could be generalized to support more task types.

D. Delay in Fog Layer

In this section, we define a recursive equation for Lij . Let us
define Lij(x) as the delay of processing and handling requests
of IoT node i in the fog layer (and possibly the cloud layer),
by fog node j during the x’th offload in the fog layer (x ≥ 0).
Also let us label Lij ≡ Lij(0). If Pj denotes the probability
that a request is accepted by fog node j (enters the queue of
fog node j) Lij(x) can be written as:

Lij(x)= Pj .(W j +XFI
ji + Y FIji)

+(1− Pj).
[
[1− φ(x)].

[
XFF
jj′ + Y FFjj′ + Lij′(x+ 1)

]
+ φ(x).

[
XFC
jk + Y FCjk +Hk +XCI

ki + Y CIki

]]
;

j′ = best(j), k = h(j). (6)

In the equation above, W j is the average waiting time in fog
node j. φ(x) is the offloading function, which is defined as

φ(x) =

{
0 x < eM

1 x = eM
. (7)

If x < eM, then φ(x) = 0, which it indicates that the request
will be offloaded to another fog node. If x = eM, then φ(x) =
1, which means that the forward limit is reached and that the
request will be offloaded to the cloud (recall Fig. 2). x takes
on integer values in [0, eM].

best(j) and h(j) are mapping functions that map a particular
fog node j to its best fog neighbor and the cloud server
associated with the fog node, respectively. Since the choice
of the best neighbor of a fog node depends on the current
state of the system, the system is dynamic and best(j) will
be a pointer to the current best neighbor of fog node j. h(j)
simply holds the index of the associated cloud node for fog
node j.

Explanation: Assume fog node j is the one that is selected
first by the IoT node i. When a request from an IoT i
node reaches the fog layer, fog node j first tries to process
the request. The request enters this node’s processing queue
with probability Pj , and does not with probability (1 − Pj),
which depends on estimated waiting time. If the request enters
the queue, it will experience average waiting time W j , and
propagation and transmission delays of XFI

ji and Y FIji to return
back to the IoT node. Note that the processing delay of the
current task entering the fog node j’s queue is already included
in W j .

If the request does not enter fog node j, fog node j will
offload the request to its best fog neighbor j′, which incurs
a propagation and transmission delay of XFF

jj′ and Y FFjj′

respectively. The request also undergoes a delay of Lij′(x+1),
which is the delay of processing and handling the request in
the fog layer (and possibly the cloud layer), by fog node j′

during the (x+ 1)’st offload. Finally when a request has been
offloaded eM times (φ(x) = 1), if the last fog node needs to
offload the request, it will do so by offloading it to the cloud,
which incurs fog-cloud propagation and transmission delay of

XFC
jk and Y FCjk respectively, cloud processing delay of Hk,

and cloud-IoT propagation and transmission delay of XCI
ki and

Y CIki respectively.
The reason that XFI

ji and Y FIji are included in Equation (6)
and not Equation (2) is because a request sent from IoT node
i to fog node j could be received from fog node j′ (offloaded
to and processed at fog node j′). In this case the propagation
and transmission delay from IoT layer to fog layer are XIF

ij

and Y IFij respectively, but the propagation and transmission
delays from fog layer to IoT layer are XFI

j′i and Y FIj′i .
Boundary case: Consider a domainM of fog nodes where

eM = 0, which means that no forwarding is allowed. In this
case if a request does not enter a fog node’s queue, it will be
offloaded to the cloud. In this case, Lij = Pj .(W j +XFI

ji +

Y FIji) + (1− Pj).[XFC
jk + Y FCjk +Hk +XCI

ki + Y CIki].
Special case: Consider a scenario where a fog node sends

some sort of feedback message to the cloud, when processing
tasks from IoT nodes (for example aggregated temperature
reading for archival purposes). Note that this does not add any
new term in the delay equations from the perspective of IoT
nodes, because sending feedback messages to the cloud does
not affect the service delay experienced by an IoT node. The
fog node simply sends the feedback message to the cloud,
while the IoT node’s request is either processed or being
processed by the fog node.

E. Acceptance Probability: Pj
Pj is the probability that a request is accepted by fog node

j (enters the queue of fog node j) and is used in Equation (6).
Pj depends on the queuing state of a fog node and the decision
to accept or offload a request upon the time of receiving the
request; in particular, if fog node j’s estimated waiting time is
greater than a threshold θj , it will offload the request to its best
neighbor. Thus Pj is extended by the following probability:

Pj = P [request enters the queue at fog node j] (8)
= P [est. waiting time of fog node j < θj] = P [Wj < θj].

F. Waiting Time in Fog and Cloud
An efficient method to update the estimated waiting time in

a fog node is discussed in Section III-D. As discussed before,
when fog node j needs to calculate the current estimated
waiting time Wj , it multiplies the estimated processing time
of each task type by the number of tasks of that type in the
queue.

A similar approach to above is used to calculate Hk for the
simulation or implementation: the cloud server multiplies the
estimated processing time of each task type by the number
of tasks of that type in the queue to compute the estimated
waiting time. One can substitute in the equations, the estimated
delay for handling the request at the cloud server k, Hk with
the average delay for handling the request at all servers in
domain N , HN , when the value of estimated waiting time in
the cloud servers are close to one another. HN then can be
obtained by

HN =
∑
k∈SC

N

ωk ×Hk, (9)

where ωk is the probability that a request from an IoT node
goes to cloud server k, and

∑
k∈SC

N
ωk = 1.

V. SIMULATION RESULTS

In this section we evaluate the proposed mechanism through
simulation. Each sample point in the graphs is obtained using 1
million requests using an event driven simulation. The network
topology is a graph with 500 IoT nodes, 25 fog nodes, and 6
cloud servers. The IoT node either processes its own request,
or sends it to its corresponding fog neighbor or to one of the
cloud servers. If the request is sent to the fog layer, based on
the proposed scheme, the request could be offloaded to other
fog nodes or to the cloud. The topology of the fog nodes in
the fog layer is generated randomly in each experiment using
a random graph generator with average node degree of 3. IoT
nodes are associated with the fog node which has the smallest
distance (i.e. has the smallest propagation delay).

If an IoT node generates type Light requests (e.g. sensor),
the communication between the IoT node and its correspond-
ing fog node is assumed to be through IEEE 802.15.4, or
NB-IoT, or ZigBee, in which the transmission rates are 250
Kbps. If the IoT node generates Heavy requests (e.g. traffic
camera), the communication between the IoT node and its
corresponding fog node is assumed to be through IEEE 802.11
a/g, and the transmission rate is 54 Mbps. The link rates
between fog nodes in one domain are 100 Mbps and the link
rates on the path from fog nodes to cloud servers are 10 Gbps.

The propagation delay between the IoT nodes and the fog
nodes, among fog nodes, and between fog nodes and the cloud
servers are uniformly distributed between U[1,2], U[0.5,1.2],
and U[15,35] respectively (in ms). Request lengths are expo-
nentially distributed with an average length of 100 bytes for
light processing tasks, and 80 KB for heavy processing tasks.
We assume that the length of the response is the same as the
length of its corresponding request, on average.

To obtain realistic values for the processing ratio of IoT
nodes to fog nodes, we looked at the processing capabilities
of the Arduino Uno R3 microcontroller (example of IoT
node generating Light requests) and an Intel dual-core i7
CPU (example of fog node). In the worst case, a fog node’s
processing capability is found to be around 3000 times faster
than that of an IoT node that generates type Light requests
(“Fog-to-IoT-Light ratio”), and 200 times faster than that of
an IoT node that generates type Heavy requests (‘Fog-to-IoT-
Heavy ratio”). We also assume that a cloud server is 100 times
faster than a fog node (“Cloud-to-Fog ratio”), on average,
and that the average processing time of IoT node for Light
and Heavy requests is 30 ms and 400 ms, respectively. Other
simulation parameters are summarized in Table III. To account
for the variation of values of the above parameters in real IoT-
fog-cloud applications, we altered the parameters uniformly as:
Fog-to-IoT-Light ratio, U[500,4000]; Fog-to-IoT-Heavy ratio,
U[100,400]; and Cloud-to-Fog ratio, U[50,200]; we found that
the result (average delay) fluctuates only by -0.77% to +5.51%.

TABLE III
SIMULATION PARAMETERS

Fig. pIi pFi bi θj eM γi γ′
i q

(a) 0 1 0.8 0.2 1 0.1 0.25 -
(b) 0 0.85 0.5 0.0002 - 0.5 0.6 0.5

(c) (d) 0.1 0.75 - 0.0002 1 0.05 0.005 0.5
(e) (f) (0) (0.2) - 0.9 0.0002 1 0.01 0.001 0.5

We compare the average service delay in three different
modes of the IoT-fog-cloud operation. In No Fog Processing
(NFP) mode, the IoT node either processes its own requests,
or sends them to the cloud. In All Fog Processing (AFP)
and Light Fog Processing (LFP) modes, the IoT node either
processes its own requests or sends them to the fog or cloud.
In AFP, both request types Light and Heavy can be sent to the
fog layer, whereas in LFP, only type Light requests are sent
to the fog layer. For even more detailed analysis, the delay
for type Light and Heavy requests is plotted separately for the
three modes in the color figures (Namely, AFPH and AFPL).
All time units are in ms.

We assume IoT node i generates type Light (or Heavy)
requests according to a Poisson process, with rate γi (or γ′i),
depending on the type of IoT node i. Fig. 3a shows the average
delay as a function of fairness factor q. q ∈ (0, 1) is the fog
fairness factor and its value depends on how the fog node
selects jobs from its processing queue. In the fair case q = 0.5,
a fog node simply selects the head of the queue. The closer
the value of q is to 0 (or 1), the higher priority is given to type
Heavy (or type Light) requests in the queue for processing. It
can be seen that when q is closer to 1, more priority is given
to light processing tasks, thus the delay of light processing
tasks is decreased and the delay of heavy processing tasks is
increased. Note that this change is only seen in AFP, as the
fairness factor q is not defined in NFP (there is no fog) and
LFP (all Light requests).

Fig. 3b shows the average service delay as a function of
eM. For AFP, the optimal value of eM where the service
delay is minimum is achieved for eM = 1 using the mentioned
parameters, and when eM > 5, AFP performs worse than NFP.
It is interesting to see that changes in eM do not change the
average service delay in LFP, since the incurred transmission
and propagation delay to offload a request among fog nodes
is negligible for Light requests with small length.

Fig. 3c and 3d show the average service delay as a function
of bi (probability that a generated request at IoT node i is
type Light). Fig. 3c shows that the average service delay for
both Heavy and Light requests do not change notably when
the percentage of Light and Heavy requests change. This is
because we are looking at each of the task types separately,
and this is oblivious to the effect of bi. By comparing the
delay of Light and Heavy processing tasks in Fig. 3c for
the three modes, it is clear that the AFP is the best mode.
Fig. 3d illustrates the interesting relationship between average
service delay (of combined Light and Heavy requests) in three
modes when the bi changes. It can be seen that AFP in general
outperforms LFP and NFP in terms of average service delay;

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e

D
el

ay
 (m

s)

q: fairness parameter for fog nodes

 NFPH
 NFPL
 AFPH
 AFPL
 LFPH
 LFPL

(a)

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 5 10 15 20 25

Av
er

ag
e

De
la

y
(m

s)
eM: Fog Layer Offload Limit

 NFP
 AFP
 LFP

(b)

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

D
el

ay
 (m

s)

b: Probability of Type 1 (LIGHT) request

 NFPH
 NFPL

 AFPH
 AFPL

 LFPH
 LFPL

(c)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

D
el

ay
 (m

s)

b: Probability of Type 1 (LIGHT) request

 NFP
 AFP
 LFP

(d)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

D
el

ay
 (m

s)

pF: prob. of sending request to fog layer (pI=0)

 NFPH
 NFPL
 AFPH
 AFPL
 LFPH
 LFPL

(e)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Av
er

ag
e

D
el

ay
 (m

s)

pF: prob. of sending request to fog layer (pI=0.2)

 NFPH
 NFPL
 AFPH
 AFPL
 LFPH
 LFPL

(f)

Fig. 3. Simulation results

however, when the percentage of Light requests in the network
increases, LFP’s performance gets closer to that of AFP. This
effect is due to having fewer heavy processing tasks in the
network, which make the average service delay larger.

Fig. 3e and 3f show the effects of pIi , pFi , and pCi on the
average service delay. Both figures show how the average ser-
vice delay is reduced under each policy when the probability of
sending requests to fog nodes increases. In Fig. 3e, ∀i : pIi = 0
and it is clear that the performance of both LFP and AFP
is better than that of NFP, as the delays in all the cases is
lower. For Fig. 3f, ∀i : pIi = 0.2 and it can be seen that the
overall delay has been increased, because of weak processing
capabilities of IoT nodes. Yet, the overall delay is decreased
to from 60 ms to 18 ms for light processing tasks, and from
150 ms to 117 ms, for heavy processing tasks. In this figure, it
is also evident that the performance of LFP and AFP is better
than that of NFP.

VI. CONCLUSION

The vision of fog computing is studied in this paper as a
complement to cloud computing and an essential ingredient of
the IoT. We introduced a framework for handling IoT request
in the fog layer and an analytical model to formulate service
delay in the IoT-fog-cloud scenarios. We showed how our
delay-minimizing policy can be beneficial for IoT applications.
Various numerical results are included to support our claims by
showing how changes in parameters could affect the average
service delay.

Our analytical model can support other fog computing
policies. Suppose when decision to offload a task is not based
on queueing status, one can replace Pj and Lij , for instance,
with the desired equations based on their policy. As future
work, we plan to model the fog and the cloud using Markovian
queueing systems and obtain closed-form equations for all
components of our model. Moreover, it is interesting to see
how cost can affect the minimizing service delay problem.
In other words, studying the delay-cost tradeoff in the fog
computing could be a potential research direction.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Commun. Review, vol. 44, no. 5, pp. 27–32, 2014.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, pp. 13–16, 2012.

[4] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, pp. 37–42, ACM, 2015.

[5] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric com-
puting: Vision and challenges,” SIGCOMM Computer Communication
Review, vol. 45, no. 5, pp. 37–42, October 2015.

[6] X. Guo, R. Singh, T. Zhao, and Z. Niu, “An index based task assign-
ment policy for achieving optimal power-delay tradeoff in edge cloud
systems,” in 2016 IEEE International Conference on Communications
(ICC), pp. 1–7, May 2016.

[7] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost-efficient
resource management in fog computing supported medical cps,” IEEE
Transactions on Emerging Topics in Computing, no. 99, 2016.

[8] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, Dec 2016.

[9] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of internet of things,” IEEE Transactions
on Cloud Computing, no. 99, pp. 1–1, 2015.

[10] K. G. Shin and Y. C. Chang, “Load sharing in distributed real-time sys-
tems with state-change broadcasts,” IEEE Transactions on Computers,
vol. 38, no. 8, pp. 1124–1142, Aug 1989.

[11] K. G. Shin and C.-J. Hou, “Design and evaluation of effective load
sharing in distributed real-time systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 5, no. 7, pp. 704–719, Jul 1994.

[12] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of cyber
foraging of mobile devices,” IEEE Communications Surveys Tutorials,
vol. 14, pp. 1232–1243, Fourth Quarter 2012.

[13] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-
performance cloudlets for computation offloading in mobile ad hoc
clouds,” Journal of Supercomputing, vol. 71, no. 8, pp. 3009–3036, 2015.

