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Abstract—With the Internet of Things (IoT) becoming a major
component of our daily life, understanding how to improve
the quality of service (QoS) for IoT applications through fog
computing is becoming an important problem. In this paper, we
introduce a general framework for IoT-fog-cloud applications,
and propose a delay-minimizing collaboration and offloading
policy for fog-capable devices that aims to reduce the service
delay for IoT applications. We then develop an analytical model
to evaluate our policy and show how the proposed framework
helps to reduce IoT service delay.

Index Terms—Fog Computing, Internet of Things, QoS, Cloud
Computing, Markovian Queueing Networks, Task Offloading

I. INTRODUCTION

THE Internet of Things (IoT) is likely to be incorpo-
rated into our daily life, in areas such as transportation,

healthcare, industrial automation, smart home, smart city, and
emergency response. The IoT enables things to see and sense
the environment, to make coordinated decisions, and to per-
form tasks based on these observations [2]. In order to realize
the full benefits of the IoT, it will be necessary to provide
sufficient networking and computing infrastructure to support
low latency and fast response times for IoT applications. Cloud
Computing has been the main enabler for IoT applications with
its ample storage and processing capacity. Nonetheless, being
far from end-users, cloud-supported IoT systems face several
challenges including high response time, heavy load on cloud
servers and lack of global mobility.

In the era of Big Data, it may be inefficient to send
the extraordinarily large amount of data that swarms of IoT
devices generate to the cloud, due to the high cost of com-
munication bandwidth, and due to the high redundancy of
data (for instance, constant periodic sensor reading). Instead
of moving data to the cloud, it may be more efficient to move
the applications, storage, and processing closer to the data
produced by the IoT. Fog computing is well suited to address
this issue by moving the above services closer to where data
is produced.

Fog computing is an emerging concept that puts the cloud
services closer to the end users (and things) for better QoS [3],
[4]. Fog is an intelligent layer sitting between cloud and IoT,
that brings low latency, location awareness, and wide-spread
geographical distribution for the IoT. Inheriting main concepts
from cloud computing, fog provides computation, storage, and
networking services to end-users, anywhere along the thing-to-
cloud continuum, according to OpenFog Consortium. The idea
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is to serve the requests that demand real-time and low-latency
services at the fog, and to send the requests that demand
permanent storage or require extensive analysis to the cloud
[5], [6]. Due to the countless benefits of fog, the research
in this area has been gaining attention, and researchers have
recently started to define visions, basic notions, and possible
architectures of fog computing [3], [4], [7].

A. Related Work

The problem of task offloading in fog has recently gained
attention from researchers. The authors in [8] propose and
formulate a cooperative offloading policy between two fog data
centers for load balancing. Similarly, the work in [9] analyzes
an offloading policy between multiple fog data centers in a ring
topology. In this paper we formulate and propose a general
policy for fog nodes to offload IoT requests to other fog nodes
or to forward them to the cloud, in order to minimize the
IoT service delay. This policy is general, in the sense that
the number and topology of fog nodes are arbitrary. There
are other similar efforts aimed at minimizing delay via fog
computing, which are not directly related to delay-minimizing
fog offloading. For instance, the authors in [5] introduce a
hybrid architecture that integrates a cloud radio access network
and a fog radio access network to handle network traffic. They
propose the idea of serving delay-tolerant traffic in the cloud
and handling low-latency traffic in the fog.

A similar problem to task offloading in the fog (fog of-
floading), is the task or workload assignment problem in
the fog, which is assigning tasks or workloads to either
fog nodes or cloud servers, while minimizing delay, cost, or
energy. In these problems, the set of tasks are given and
the problem is modeled as a static optimization problem
that determines the assignment of the tasks or workloads.
Namely, the authors in [10] study base station association, task
distribution, and virtual machine placement in fog-computing-
supported medical cyber-physical systems, while minimizing
the overall cost and satisfying QoS requirements. Another
effort is the work in [11] that addresses power-delay trade-off
in cloud-fog computing by workload allocation. More recent
work in [12] focuses on theoretical modeling of fog computing
architectures, specifically, service delay, power consumption,
and cost. Nevertheless, task assignment problems are static in
nature and have high complexity. In task assignment problems,
all the parameters (of nodes and network) are assumed to
be known to an entity that solves the overall problem for
the optimal solution, which may not be practical. The fog
offloading problem does not have such assumptions.

Recent work in [13] addressed the design of a policy for
assigning tasks that are generated by mobile subscribers to
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edge clouds, to achieve a power-delay trade-off. The problem
is first formulated as a static optimization problem. The au-
thors then propose a distributed policy for task assignment that
could be implemented efficiently on the edge clouds. However,
IoT-to-cloud or fog-to-cloud communication and computation
offloading capability are not considered. Moreover, in the
distributed task assignment policy, edge clouds broadcast their
status continuously to mobile subscribers, which may limit
scalability in IoT networks with a large number of edge
devices and end users.

In this paper we study the problem of fog offloading for
reducing IoT service delay, which is a fundamentally different
problem from the problems discussed above (e.g. [5], [10]–
[13]). The proposed offloading policy is general as opposed
to studies [8], [9], as it does not place any restrictions on the
number or topology of the fog nodes. In the rest of the paper,
we discuss our proposed fog framework and offloading policy.

B. Contribution

In this work, we introduce a common sense general frame-
work to understand, evaluate and model service delay in IoT-
fog-cloud application scenarios. We then propose a delay-
minimizing offloading policy for fog nodes whose goal is
to reduce service delay for the IoT nodes. In contrast to the
existing works in the literature, the proposed policy considers
IoT-to-cloud and fog-to-cloud interaction, and also employs
fog-to-fog communication to reduce the service delay by shar-
ing load. For load sharing, the policy considers not only the
queue length but also different request types that have variant
processing times. Additionally, our scheme is not limited to
any particular architecture (such as a cellular network), and
the number, type, or topology of IoT nodes, fog nodes, and
cloud servers are not restricted. We also develop an analytical
model to evaluate service delay in the IoT-fog-cloud scenarios,
and perform extensive simulation studies to support the model
and the proposed policy. This paper extends our previous work
[1] as we introduce a complete analytical model for evaluating
service delay, and we present additional results.

C. Paper Organization

The rest of this paper is organized as follows. We introduce
our IoT-fog-cloud framework in Section II and propose the
policy for reducing IoT service delay in Section III. We
then formally introduce the analytical model for evaluating
IoT service delay and its components in Section IV, and
explain the numerical results of our experiment in Section V.
Finally, Section VI summarizes the paper and provides future
directions for this work.

II. GENERAL IOT-FOG-CLOUD FRAMEWORK

Figure 1 illustrates a general framework for an IoT-fog-
cloud architecture that is considered in this work. There are
three layers in this architecture: IoT layer, where the IoT
devices and end-users are located, fog layer, where fog nodes
are placed, and cloud layer, where distributed cloud servers
are located. A cloud server can be composed of several

Fig. 1. General framework for IoT-fog-cloud architecture. Each layer is
partitioned into domains where a single application is implemented.

processing units, such as a rack of physical servers or a
server with multiple processing cores. In each layer, nodes are
divided into domains where a single IoT-fog-cloud application
is implemented.

For instance, a domain of IoT nodes (in a factory, for
instance) is shown in dark green, and they communicate with a
domain of fog nodes associated with the application. A domain
of IoT nodes could comprise IoT devices in a smart home,
temperature sensors in a factory, or soil humidity sensors in a
farm where all the IoT devices in the vicinity are considered to
be in a single domain. Normally the fog nodes in one domain
are placed in close proximity to each other, for example, in a
neighborhood or in levels of a building. Each domain of fog
nodes is associated with a set of cloud servers for a single
application.

The basic way in which IoT nodes, fog nodes, and cloud
servers operate and interact is as follows. IoT nodes can
process requests locally, send it to a fog node, or send it to
the cloud; fog nodes can process requests, forward requests to
other fog nodes in the same domain, or forward the requests to
the cloud; cloud servers process requests and send the response
back to the IoT nodes. In this work, the aim is to minimize
service delay for IoT devices in the proposed framework based
on fog computing. The fog layer lies between IoT devices and
the cloud; thus, it can handle a majority of IoT service requests
in order to reduce the overall service delay.

Definition 1. Service delay for an IoT node is the time
required to serve a request, i.e. the time interval between the
moment when an IoT node sends a service request and when
it receives the response for that request.

We first introduce the delay-minimizing policy in the fol-
lowing section, then formulate the IoT service delay to eval-
uate the policy analytically.

III. FOG NODE COLLABORATION POLICY

In this section, we introduce the framework in which fog
nodes collaborate with each other to fulfill the requests sent
from IoT nodes to the fog layer. If a fog node can accept
a request based on its current load, it processes the request;
however, when the fog node is busy processing many tasks,
it may offload the request to some other fog nodes or to the
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TABLE I
AN EXAMPLE OF REACHABILITY TABLE OF FOG NODE

RTT (ms) Est. Waiting Time (ms) Node ID
3.85 30.4 129.110.83.81 *
5.3 72.3 129.110.5.75

...
...

...

cloud (this is called load sharing). The concept of load sharing
is well studied in the literature [14], [15], and we borrow
similar concepts for the design of the policy by which fog
nodes collaborate. This collaboration is discussed in detail the
following subsections.

A. Modes of Interaction

We propose two modes of interaction for fog nodes: one
mode is centralized, in which a central authority controls the
interaction of fog nodes, and the other one is distributed, where
fog nodes interact with their neighboring fog nodes using a
universal protocol.

In the central mode of interaction, in each domain of fog
nodes there is a Central Node that controls the interaction
among the fog nodes in that domain. In particular, based on
the current condition of their queue, fog nodes in domain M
report their estimated time to process the requests in queue and
in service (i.e. estimated waiting time) to the Central Node of
domain M.

Definition 2. Estimated waiting time (W ) is the sum of
the estimated processing delays of the requests in the queue
(queueing delay), plus the estimated processing delay of the
request under service.

The Central Node of domain M announces the estimated
waiting time of the fog nodes in domain M to their neigh-
boring fog nodes in domain M. Upon reception of estimated
waiting times from the Central Node, fog nodes record them
in a Reachability table that they maintain. The Reachability
table is utilized by fog nodes when making a decision as
to which fog node to offload a request for processing. The
Reachability table has three columns as it is shown in Table
I. The information in the Reachability table of a fog node in
domain M is updated by both the Central Node of domain
M and the fog node itself; the Central Node announces the
estimated waiting times of neighboring fog nodes, and the
fog nodes measure the round-trip delay among themselves.
An efficient way to estimate the waiting time of fog nodes is
discussed in Section III-D.

Using estimated waiting time and round-trip delay in the
Reachability table, each fog node selects a fog node from
among its neighbors as the best fog node. It does so by
selecting a neighboring fog node in the same domain with
the smallest estimated waiting time plus half of the round-trip
delay. The best fog node is marked with star * in Table I.

In the distributed mode of interaction, there is no Central
Node; instead, fog nodes in domain M run a protocol to
distribute their state information to the neighboring fog nodes
in the same domain. Each fog node maintains the Reacha-
bility table using the estimated waiting time it receives from

Estimated 
Waiting Time 
< Threshold

(Wj < θj)  

Place request in queue 
Update Waiting Time

Nfwd = eM
or 

All neighbors 
visited

Increment Nfwd of request
Forward to best neighbor

Request received 

Yes

No

No

Yes
Forward to cloud

Fig. 2. Policy of fog node j for handling the received requests.

neighboring fog nodes, and the round-trip delay from itself
to its neighbors. Similar to the central mode of interaction, a
fog node always selects the best neighbor with the smallest
estimated waiting time plus half of the round-trip delay.

Comparison: The central mode of interaction can be seen
as central resource orchestration, where the Central Node is
knowledgeable of the topology and the state of the fog nodes
in a domain. Inherently, the central mode of interaction is
easier to implement, because there is no need for a distributed
communication protocol among fog nodes; all the procedures
of the estimated waiting time announcements will be imple-
mented on the Central Node. Moreover, the Central Node
could be used to push fog applications and software updates
to the fog nodes in a domain.

On the other hand, the distributed mode is more suitable
for scenarios in which fog nodes are not necessarily static,
or when the fog network is formed in an ad hoc manner.
Furthermore, in the distributed mode, there is no need to have a
dedicated node to act as the Central Node, which is a reduction
in the cost of deployment and less vulnerable to a single point
of failure. For the purpose of this paper and our simulation
studies, we have chosen the distributed mode of interaction,
since our policy only needs to announce estimated waiting
time updates, which is fairly easy to implement on fog nodes.

B. When to Offload a Task

In this subsection, we discuss the decision fog nodes make
for processing or offloading a task to other fog nodes. The con-
cept of computation offloading for mobile devices is studied
in [16], [17], and a number of possible policies are discussed
(based on energy consumption, response time, availability,
etc.). In our scheme, the decision to offload a task is based
on the response time of a fog node, which depends on several
factors: the amount of computation needed to be performed on
a task, and the queueing status (in terms of current load) and
processing capability of a fog node. In particular, we propose
a model that takes into account the different processing times
of different individual tasks. In other words, in our model,
there is a distinction between heavy processing tasks and light
processing tasks.

We assume requests have two types: type Light (light
processing) with an average processing time of zj at the fog
node j and Zk at the cloud server k, and type Heavy (heavy
processing) with an average processing time of z′j at the fog
node j and Z′k at the cloud server k. For example, requests
sent by temperature sensors to fog nodes for calculating the
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average room temperature can be seen as light processing
tasks. Similarly, a license plate reading request in a recorded
video of a vehicle, sent by a traffic camera to fog nodes is
an example of a heavy processing task. Note that, in general,
more than two task types could be considered; however, in
this paper, we only consider two task types for the simplicity
of the presentation.

The procedure of processing or forwarding requests by fog
nodes is shown in Fig. 2. When a fog node receives a request,
it first checks the estimated waiting time of tasks in the queue.

A method for estimating processing delay and hence waiting
time of the tasks in the queue is discussed in Section III-D.
If the estimated waiting time is smaller than a threshold θj
at fog node j, the fog node will accept the task. The task
enters the queue and the estimated waiting time is updated.
If not, the fog node offloads this request, either to one of its
neighbors, or to the cloud. If the number of times the request
has been offloaded (Nfwd) is less than the offload limit eM
for domain M (the domain where fog node j belongs), the
request will be forwarded to a neighboring fog node. If not,
it will be forwarded to the cloud.

The value of θj depends on the incoming traffic pattern
from IoT nodes to fog nodes in a domain. In general, if all
fog nodes have low load, offloading is unnecessary; and if all
fog nodes have heavy load, offloading will not help to reduce
the delay significantly. Offloading helps when there is a high
degree of variance in the load among fog nodes. The value
of θj could be adjusted in implementation based on the given
traffic demands, to reach an optimal value that minimizes the
average service delay.

C. Finding Best Neighbor
Round-trip delays can be measured at the time of the setup,

so that fog nodes have the values for the Reachability Table.
Upon receiving an estimated waiting time sample, either from
the Central Node or another fog node depending on the mode,
the fog node updates the corresponding estimated waiting time
in the Reachability table. As discussed, a fog node selects as
its best neighbor the fog node for which the estimated delay
for the current request, if offloaded, is minimal.

When a request is offloaded to the fog node’s best neighbor,
it undergoes roughly half of the corresponding round-trip delay
to reach the best neighbor. If the request enters the best
neighbor’s queue, it spends time roughly equal to the estimated
waiting time of the best neighbor, before it finishes processing
at that neighbor. If the request does not enter the queue of the
fog node’s best neighbor, the request should be offloaded again
(multiple offloads are possible when neighboring fog nodes are
busy with requests).

It is worth mentioning that if the fog nodes are mobile,
they may need to frequently measure the round-trip delays
and update them in the Reachability table. Note that for
making “optimal” offloading decision, other components, such
as propagation and transmission delay between fog nodes and
IoT nodes should be considered. However, this may not be
practical, since each fog node would need to know the delay
from the neighboring fog nodes to the corresponding IoT
nodes associated with them.

D. Checking and Updating Queue Status

When fog nodes receive requests from IoT nodes that
participate in an application, they need to distinguish between
type Light and type Heavy requests, in order to update the
queue parameters. To address this, we assume requests have in
their header a field that identifies the type of the request (for
instance Traffic Class field in IPv6 header). The application
hence sets the field in the header of the packets being generated
from IoT nodes.

Fog nodes always need to know an estimate of the current
total processing delay of the tasks in their queue (i.e. estimated
waiting time), both for when they need to make offloading
decisions, and when reporting their estimated waiting time
to neighboring fog nodes. A possible method for estimating
the waiting time is for the fog node to store an estimate
of the current waiting time of the tasks in the queue. Upon
arrival to or departure from the queue, the fog node simply
updates the estimated waiting time of the tasks in the queue. To
calculate the estimated waiting time of the tasks in the queue
W , fog node j periodically measures processing times of
recently processed tasks (new zj) and updates the estimated
processing time of each task type (zj). For light processing
tasks, we have zj = (1 − α) · zj + α · new zj (a similar
equation holds for heavy processing tasks). This equation is
a weighted average that maintains a weight of α for new
measured processing times and a weight of 1− α for the old
measurements (current estimate).

TABLE II
TABLE OF NOTATIONS

di Service delay for an IoT node i
pIi Probability that IoT node i processes its own request
pFi Probability that IoT node i sends its request to fog layer
pCi Probability that IoT node i sends its request to the cloud

XLL′
st

Propagation delay from node s in layer L to node t in
layer L′, where s, t ∈ {i, j, k} and L,L′ ∈ {I, F, C}

Y LL′
st

Sum of all transmission delays on links between node s
in layer L to node t in layer L′, where s, t ∈ {i, j, k}
and L,L′ ∈ {I, F, C}

Ai Average processing delay of requests at IoT node i

ai
Average processing delay of type Light requests at IoT
node i (a′i is average proc. delay of type Heavy requests)

Lij

Delay of processing and handling requests of IoT node i
in the fog layer (and possibly the cloud layer), where fog
node j is the fog node to which IoT node i initially
sends its request (Lij = Lij(0))

Lij(x)
Delay of processing and handling requests of IoT node i
in fog layer (and possibly cloud layer), by fog node j
during the x’th offload in the fog layer

SL
D

Set of nodes in domain D at layer L, where
(L,D) ∈ {(I,P), (F,M), (C,N )}

SL
⋃

D SL
D : set of nodes (in all domains) at layer L

Hk Average waiting time at cloud server k

∆k
Average waiting time of a single processing unit at cloud
server k

ςi Average size of request data that IoT node i generates
bi Probability that a generated request at IoT node i is Light
Wj Waiting time of fog node j
cj Number of type Light requests in fog node j’s queue

Pj
Probability that an incoming request is accepted by fog
node j

θj Offloading threshold at fog node j
eM Maximum offload limit at the fog layer in domain M
q The fog fairness parameter
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To obtain the total processing time of the tasks in the queue
on the fly, fog node j stores the current number of type Light
and Heavy requests in the queue cj and c′j , respectively, in
addition to zj and z′j . Fog nodes then multiply the estimated
processing time of each task type by the number of tasks of
that type in the queue. In other words, the estimated waiting
time W of the fog node j will be

Wj = cj · zj + c′j · z′j . (1)

IV. ANALYTICAL MODEL

A. Network Model

We model the network as an undirected graph G =
[V ;E;w], where node set V includes set of IoT nodes, fog
nodes, and cloud servers (V = SI ∪ SF ∪ SC). The Edge set
E represents the communication links between the nodes. For
instance, there is a link between IoT node i and fog node j
if they communicate. The edge weight set w represents the
weight of the edges between nodes. We use the tuple (X,R)
for the edge weights, where X represents the propagation
delay, and R the transmission rate between two nodes. We
will not pose any restrictions on the topology, except for the
mentioned logical three-layer architecture, as this makes the
model easy to present.

B. Service Delay

Recall that IoT nodes process requests locally, send it to a
fog node, or send it to the cloud. Thus, service delay di for
an IoT node i can be written as:

di = pIi · (Ai) + pFi · (XIF
ij + Y IFij + Lij)

+pCi · (XIC
ik + Y ICik +Hk +XCI

ki + Y CIki );

j = f(i), k = g(i), (2)

where pIi is the probability that the IoT node i processes its
own request at the IoT layer, pFi is the probability of sending
the request to the fog layer, and pCi is the probability that the
IoT node sends the request directly to the cloud; pIi + pFi +
pCi = 1. Ai is the average processing delay of the IoT node i
when it processes its own request. XIF

ij is propagation delay
from IoT node i to fog node j, Y IFij is sum of all transmission
delays on links from IoT node i to fog node j. Similarly, XIC

ik

is propagation delay from IoT node i to cloud server k, Y ICik
is sum of all transmission delays on links from IoT node i
to cloud server k. XCI

ki and Y CIki are the propagation and
transmission delays from cloud server k to IoT node i.

The transmission and propagation delay from the fog layer
to IoT node i will be included in Lij , since the request may
be further offloaded to a different node in the fog layer (more
details in Section IV-E).
Lij is the delay for processing and handling requests of IoT

node i in the fog layer (and possibly cloud layer, if fog nodes
offload the request to the cloud), where fog node j is the first
fog node to which IoT node i initially sends its request. Note
that fog node j might offload the request to another fog node
or to the cloud, and that all the corresponding incurred delays
are included in Lij . Hk is the average delay for handling the

request at the cloud server k, which consists of the queueing
time at the cloud server k plus the processing time at the cloud
server k. (Lij and Hk will be discussed in further detail in
Sections IV-E and IV-K respectively).
f(i) and g(i) are mapping functions that indicate the fog

node j and cloud server k to which IoT node i sends its
requests, respectively (refer to Table III). For instance, if in
an application, IoT node i always sends its requests to fog
node j∗ in the fog layer, then f(i) = j∗. In another scenario
if IoT nodes always send their requests to the closest fog node
in the fog layer, then f(i) = arg minj X

IF
ij , which translates

to the index of the fog node with smallest propagation delay
(distance) from IoT node i.

To formalize the problem further, let us define an IoT-fog-
cloud application Ψ. In the rest of this work all the equations
are defined on a single application Ψ(N ,M,P).

Definition 3. IoT-fog-cloud application Ψ is an application
on domain N of cloud servers, domain M of fog nodes
and domain P of IoT nodes, and is written as Ψ(N ,M,P).
Examples of Ψ are: video processing, temperature sensor
reporting, traffic road analysis, and oil rig pressure monitoring.

We do not assume any distribution for pIi , pFi , and pCi ,
since their values will be defined by individual applications
and based on QoS requirements and policies. In other words,
they will be given to the scheme as input. In Section V, we
assume different values for these probabilities for type Heavy
and Light requests, depending on the type of IoT node i.

By using the model to evaluate the service delay for the IoT
nodes in one application domain, our goal is to minimize delay
through the definition of policies for exchanging requests be-
tween IoT nodes, fog nodes, and cloud servers. We formulate
the above statement as the minimization of the average service
delay of IoT nodes in domain P , or

min
1

|SIP |
∑
i∈SI
P

di, (3)

where SIP denotes the set of IoT nodes that are in domain
P . Similar to above, SFM indicates the set of fog nodes in
domain M, and SCN is the set of cloud servers in domain N .
In the following subsection, we will discuss in more details
the components of the service delay.

C. Propagation and Transmission Delays

In Equation (2) we have the IoT-cloud delay terms XIC
ik ,

Y ICik , XCI
ki , Y CIki when the IoT node sends its requests directly

to the cloud layer. These terms are effective in the equation
in cases where the application Ψ is not implemented in the
fog layer (SFM = {}), or when the request must be sent to the
cloud for archival purposes, or when there is no fog layer and
the IoT node communicates directly to the cloud.

Recall that Y IFij is the sum of all transmission delays on
the links from IoT node i to fog node j. If IoT node i and
fog node j are l-hop neighbors, we will have

Y IFij =
∑
l

ςi
Rl
. (4)
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where ςi is the average amount of request data that IoT node
i generates, and Rl is the transmission rate of the l’th link
between IoT node i and fog node j. The expanded equations
for transmission delays between other layers (Y ICik , Y FCjk , etc.)
are derived similarly to Y IFij .

D. Processing Delay of IoT node

As explained in Equation (2), for IoT node i, the average
processing delay is Ai. If bi denotes the probability that a
generated request at IoT node i is type Light, and b′i = 1− bi
is the probability that a generated request at IoT node i is type
Heavy, Ai could be written as

Ai = bi · ai + b′i · a′i, (5)

where ai is the average processing time of requests of type
Light at IoT node i, and a′i is the average processing time
of requests of type Heavy at IoT node i. If IoT node i is of
type Light (or type Heavy), i.e. it only generates type Light
(or type Heavy) requests, bi = 1 (or bi = 0) and Ai = ai (or
Ai = a′i). Should more than two types of tasks be considered,
the equation above (and other equations with two task types)
could be generalized to support more task types.

Table III summarizes the important parameters of different
layers and shows the mapping functions that are used in
the analytical model. A few of the parameters and mapping
functions have already been introduced (such as ai and f(i));
yet others will be introduced in the following subsections.

E. Delay in Fog Layer

In this section, we define a recursive equation for Lij . Let us
define Lij(x) as the delay of processing and handling requests
of IoT node i in the fog layer (and possibly the cloud layer),
by fog node j during the x’th offload in the fog layer (x ≥ 0).
Also, let us label Lij ≡ Lij(0). If Pj denotes the probability
that a request is accepted by fog node j (enters the queue of
fog node j) Lij(x) can be written as:

Lij(x)= Pj · (W j +XFI
ji + Y FIji )

+(1− Pj) ·
[
[1− φ(x)].

[
XFF
jj′ + Y FFjj′ + Lij′(x+ 1)

]
+ φ(x) ·

[
XFC
jk + Y FCjk +Hk +XCI

ki + Y CIki

]]
;

j′ = best(j), k = h(j). (6)

In the equation above, W j is the average waiting time in fog
node j. φ(x) is the offloading function, which is defined as

φ(x) =

{
0 x < eM

1 x = eM
. (7)

If x < eM, then φ(x) = 0, which indicates that the request
will be offloaded to another fog node. If x = eM, then φ(x) =
1, which means that the forward limit is reached and that the
request will be offloaded to the cloud (recall Fig. 2). x takes
on integer values in [0, eM].

best(j) and h(j) are mapping functions that map a particular
fog node j to its best fog neighbor and the cloud server

TABLE III
PARAMETERS AND MAPPING FUNCTION OF DIFFERENT LAYERS

Layer Mapping Node Arrival Service Avgerage
Name Function Index Rate Rate Processing Time

Cloud

f g

hbest

1

k lk , l′k uk , u′k Zk/mk , Z′
k/mk

Fog j λj , λ′j µj , µ′j zj , z′j

IoT i γip
I
i , γ′ip

I
i νi, ν′i ai, a′i

associated with the fog node, respectively (see Table III). Since
the choice of the best neighbor of a fog node depends on the
current state of the system, the system is dynamic and best(j)
will be a pointer to the current best neighbor of fog node j.
h(j) simply holds the index of the associated cloud server for
fog node j.

Explanation: Assume fog node j is the one that is selected
first by the IoT node i. When a request from an IoT i
node reaches the fog layer, fog node j first tries to process
the request. The request enters this node’s processing queue
with probability Pj , and does not with probability (1 − Pj),
which depends on estimated waiting time. If the request enters
the queue, it will experience average waiting time W j , and
propagation and transmission delays of XFI

ji and Y FIji to return
back to the IoT node. Note that the processing delay of the
current task entering the fog node j’s queue is already included
in the calculation of W j , because of the way waiting time is
defined.

If the request does not enter fog node j, fog node j will
offload the request to its best fog neighbor j′, which incurs
a propagation and transmission delay of XFF

jj′ and Y FFjj′ ,
respectively. The request also undergoes a delay of Lij′(x+1),
which is the delay of processing and handling the request in
the fog layer (and possibly the cloud layer), by fog node j′

during the x + 1’st offload. Finally when a request has been
offloaded eM times (φ(x) = 1), if the last fog node needs to
offload the request, it will do so by offloading it to the cloud,
which incurs fog-cloud propagation and transmission delay of
XFC
jk and Y FCjk , respectively, cloud processing delay of Hk,

and cloud-IoT propagation and transmission delay of XCI
ki and

Y CIki , respectively.
The reason XFI

ji and Y FIji are included in Equation (6) and
not Equation (2) is because a request sent from IoT node i
to fog node j could be received from fog node j′ (offloaded
to and processed at fog node j′). In this case the propagation
and transmission delay from IoT layer to fog layer are XIF

ij

and Y IFij , respectively, but the propagation and transmission
delays from fog layer to IoT layer are XFI

j′i and Y FIj′i .
Boundary case: Consider a domainM of fog nodes where

eM = 0, which means no forwarding is allowed. In this case, if
a request does not enter a fog node’s queue, it will be offloaded
to the cloud. In this case, Lij = Pj · (W j + XFI

ji + Y FIji ) +

(1− Pj) · [XFC
jk + Y FCjk +Hk +XCI

ki + Y CIki ].

F. Average Waiting Time of Fog Node

To obtain an equation for the average waiting time of fog
node j, W j , we need to model fog nodes. We assume a fog
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node is a single server with a large enough queue to hold
infinite incoming requests. The incoming traffic to fog nodes
is considered to be Poisson (request type Light with rate λj
and request type Heavy with rate λ′j) and processing times to
be exponentially distributed (request type Light with rate µj
and request type Heavy with rate µ′j). Thus, fog nodes can
be modeled as Markovian queuing systems with multi-class
traffic.

To derive the equation for average waiting time of fog node,
we need to define the state of the system. We define P jn,n′
as the state in which there are N = n type Light requests
and N ′ = n′ type Heavy requests in the fog node j (i.e.
n+n′−1 requests are in the queue and 1 request is in service,
if n, n′ 6= 0). Thus W j can be calculated as:

W j = E(Wj) =
∑
n

∑
n′

E(Wj |N = n,N ′ = n′)P jn,n′ , (8)

where random variable Wj denotes the waiting time of fog
node j. We will derive a closed form equation for P jn,n′ in
Section IV-G. E(Wj |N = n,N ′ = n′) is calculated as:

E(Wj |N = n,N ′ = n′) = n · 1

µj
+ n′ · 1

µ′j
, (9)

and hence W j =
∑
n

∑
n′ [(

n
µj

+ n′

µ′j
)P jn,n′ ].

G. Fog Node Steady State Probability P jn,n′

To obtain the fog steady state probability P jn,n′ , one can
model the system as a two-dimensional Markov chain and
solve for steady-state probabilities P jn,n′ . The states are labeled
as (n, n′), denoting n type Light and n′ type Heavy requests
in the queue. If rt:t′ signifies the transition rate from state t
to t′, we can obtain the transition rates of the state diagram
as follows:

r(n,n′):(n+1,n′) = λj , (10)
r(n,n′):(n,n′+1) = λ′j , (11)
r(n,n′):(n−1,n′) = Qn,n′µj , (12)
r(n,n′):(n,n′−1) = (1−Qn,n′)µ′j , (13)

where Qn,n′ is a state-dependent function that is defined as

Qn,n′ =
qn

qn+ (1− q)n′
. (14)

In the above definition, q ∈ (0, 1) is the fairness parameter
and its value depends on how the fog node selects jobs from
its queue.

Fog nodes segregate type Light and Heavy requests in their
queue, and depending on the value of q, select the next job
to process from each of the two groups. The closer the value
of q is to 0 (or 1), the higher priority is given to type Heavy
(or type Light) requests in the queue for processing. When
q = 0.5, Qn,n′ = n

n+n′ , and this is equivalent to the case
when the fog node simply selects the head of the queue for
processing. More specifically, for q = 0.5, if the fog node is
in state (n, n′), on average the system processes a type Light
request and goes to state (n − 1, n′) with rate n

n+n′µj , and
processes a type Heavy request and goes to state (n, n′ − 1)

with rate n′

n+n′µ
′
j . This is the case because on average the head

of the queue is a Light request with probability n
n+n′ and is

a Heavy request with probability n′

n+n′ .

H. Acceptance Probability: Pj
Pj is the probability that a request is accepted by fog node

j (enters the queue of fog node j) and is used in Equation (6).
Pj depends on the queuing state of a fog node; in particular, if
fog node j’s estimated waiting time is greater than a threshold
θj , it will offload the request to its best neighbor. Thus Pj is
extended by the following probability:

Pj = P [request enters the queue at fog node j] (15)
= P [waiting time of fog node j < θj ] = P [Wj < θj ].

To evaluate the equation above, we need to derive the
probability density function (PDF) of waiting time Wj . Recall
that waiting time Wj is the sum of the processing delays of all
the requests in fog node j. Let the random variables xjl and yjl
denote the processing delays of the l’th request of type Light
and type Heavy in fog node j, respectively. If there are N
type Light and N ′ type Heavy requests in the fog node j, the
waiting time is Wj =

∑N
l=1 x

j
l +

∑N ′

l=1 y
j
l .

Let Xj
n =

∑n
l=1 x

j
l , which is the sum of n processing

delays (exponentially distributed) of request type Light, and
Y jn′ =

∑n′

l=1 y
j
l , which is the sum of n′ processing delays

(exponentially distributed) of request type Heavy. Thus Wj =
Xj
N+Y jN ′ . Note that the sum of m independent and identically

distributed exponential random variables with parameter µ is
a gamma random variable with parameters (m,µ). Hence,
the PDF of Xj

n and Y jn′ will follow gamma distributions as
follows:

fXj
n
(t) =

µj(µjt)
n−1.e−µjt

(n− 1)!
u(t), (16)

fY j

n′
(t) =

µ′j(µ
′
jt)

n′−1.e−µ
′
jt

(n′ − 1)!
u(t), (17)

such that u(t) is the unit step function. Note that the shown
PDFs are gamma distributions with parameters (n, µj) and
(n′, µ′j), respectively. What follows is the derivation of Pj :

Pj = P [Wj < θj ] = P [Xj
N + Y jN ′ < θj ]

=
∞∑
n=0

∞∑
n′=0

P [Xj
N + Y jN ′ < θj |N = n,N ′ = n′]P jn,n′

= P j0,0 +
∞∑
n=1

P [Xj
n < θj ]P

j
n,0 +

∞∑
n′=1

P [Y jn′ < θj ]P
j
0,n′

+
∞∑
n=1

∞∑
n′=1

P [Xj
n + Y jn′ < θj ]P

j
n,n′

= P j0,0 +
∞∑
n=1

[

∫ θj

0

fXj
n
(t)dt]P jn,0 +

∞∑
n′=1

[

∫ θj

0

fY j

n′
(t)dt]P j0,n′

+
∞∑
n=1

∞∑
n′=1

[

∫ θj

0

fXj
n+Y

j

n′
(t)dt]P jn,n′ (18)

In order to expand the summation on the second line, we
separated the sum into four cases in the following order:
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(n = 0, n′ = 0), (n > 0, n′ = 0), (n = 0, n′ > 0), and
(n > 0, n′ > 0).

We have the equations for fXj
n
(t) and fY j

n′
(t), but we do

not have an equation for fXj
n+Y

j

n′
. Since Xj

n and Y jn′ are

independent, the PDF of Xj
n + Y jn′ will be the convolution

of fXj
n
(t) and fY j

n′
(t). We transform fXj

n
(t) and fY j

n′
(t) to

their corresponding Laplace transforms L{fXj
n
} and L{fY j

n′
},

so that the Laplace transform of Xj
n + Y jn′ is the product of

L{fXj
n
} and L{fY j

n′
}. We have

L{fXj
n
}(s) =

(µj)
n

(s+ µj)n
, L{fY j

n′
}(s) =

(µ′j)
n′

(s+ µ′j)
n′
. (19)

The PDF of Xj
n + Y jn′ is then given by:

fXj
n+Y

j

n′
(t) = (µj)

n(µ′j)
n′L−1{ 1

(s+ µj)n(s+ µ′j)
n′
}. (20)

We now have all the components of Equation (18). In the
following section, we discuss how to obtain the arrival rates
to the fog nodes.

I. Arrival Rates to Fog Nodes
The rates of arrival to fog nodes (λj and λ′j) are needed

for the evaluation of the fog steady-state probability P jn,n′ .
We can obtain these rates by considering the queueing model
of the fog nodes. Figure 3 shows the queueing model of fog
node j for type Light requests. Note that in this subsection we
only perform analysis for obtaining equations for type Light
requests, including λj . The equation for λ′j is derived similarly
to that of λj .

The incoming type Light traffic from associated IoT nodes
to fog node j is denoted by Ij . The offloaded type Light
requests from neighboring fog nodes to fog node j are labeled
δj1, δj2, . . . , δjeM . These all account for the incoming type
Light traffic to fog node j. The incoming type Light traffic to
fog node j is labeled as vj . Thus,

vj = Ij +

eM∑
l=1

δjl. (21)

Recall that Pj is the probability that an incoming request
is accepted by fog node j. So λj , the arrival rate (type Light)
of fog node j could be obtained by the following equation:

λj = Pj · vj = Pj(Ij +

eM∑
l=1

δjl). (22)

When the request is not accepted by fog node j, the fog node
j offloads it to its best neighbor, or to the cloud. The offloaded
type Light requests from fog node j to its best neighbor are
labeled βj1, βj2, . . . , βjeM . The offloaded type Light requests
from fog node j to the cloud is labeled Cj .

In order to evaluate the Equation (22), we need to have
closed-form equations for Ij and δjl’s. Ij is obtained easily as
follows. If f−1(j) denotes the mapping function that indicates
the set of IoT nodes that send their requests to fog node j,
then Ij is:

Ij =
∑

i∈f−1(j)

[γi · pFi ], (23)

µj

...

...

Response back to IoT nodes

δj1: requests offloaded 1’st time (from neighbor nodes)
δj2: requests offloaded 2’nd time (from neighbor nodes)

δjeM : requests offloaded eM’th time (from neighbor nodes)

Ij : requests from associated IoT nodes to fog node j

βj1: requests offloaded 1’st time (to best neighbor)
βj2: requests offloaded 2’nd time (to best neighbor)

βjeM : requests offloaded eM’th time (to best neighbor)

Cj : requests offloaded to cloud from fog node j

vj

λj

Fig. 3. The traffic model of fog node j (shown only for type Light requests)

where γi denotes the rate of generating Light requests from
IoT node i (in units of Erlangs). We assume IoT node i
generates type Light (or Heavy) requests according to a
Poisson process, with rate γi (or γ′i), depending on the type
of IoT node i. In order to obtain equations for δjl’s, we need
to solve the following system of equations:

βj1 = (1− Pj) · Ij , (24)
βj2 = (1− Pj) · δj1 , (25)

...
βjeM = (1− Pj) · δj(eM−1). (26)

If fog node j cannot accept a request sent from IoT nodes
(Ij), the request will be offloaded for the first time to fog node
j’s best neighbor (Equation (24)). Similar to this explanation,
other equations could be realized: if an l-times-offloaded
request is not accepted by the fog node j (δjl), it will be
offloaded for the (l+ 1)’st time to fog node j’s best neighbor
(βj(l+1)). Ij hence could be also be expressed as δj0; type
Light requests that are not offloaded so far.

Finally, if a request is already offloaded eM times, and is
not accepted by fog node j, it will be offloaded to the cloud.
This is realized by

Cj = (1− Pj) · δjeM . (27)

βj1 could be calculated using Equation (24), because we
have all the components of the equation. Though, to attain
βj2, . . . , βjeM , we need to have the equations for δjl’s.

Consider fog node j, and recall δjl represents the type Light
requests that are offloaded for the l’th time from neighboring
fog nodes to fog node j. Let ĵ be one such neighbor. The
chances that fog node ĵ’s best neighbor is fog node j (and
hence offloads the requests to fog node j) is roughly 1

deg(ĵ)
,

where deg(ĵ) is the number of neighbors of fog node ĵ.
Therefore, δjl can be obtained by the considering the chances
of receiving offloaded type Light requests from neighboring
fog nodes to fog node j as

δjl =
∑

ĵ∈nghbr(j)

[βĵl ·
1

deg(ĵ)
] : 1 ≤ l ≤ eM , (28)
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where nghbr(j) is the set of neighboring fog nodes of fog node
j. We now have all the components of the system of equations,
so we can get all the βjl’s, hence all the δjl’s, and hence the
λj . As mentioned before, λ′j could be derived similarly.

J. Arrival Rates to Cloud Servers

We need the equations for the arrival rate to cloud servers (lk
and l′k) to evaluate the average waiting time of cloud servers.
The incoming traffic to the cloud servers are both from IoT
nodes and fog nodes (refer to Fig. 3). Similar to Equation (23),
we can express the arrival rate of type Light requests to cloud
server k as

lk =
∑

i∈g−1(k)

[γi · pCi ] +
∑

j∈h−1(k)

Cj , (29)

where g−1(k) is a mapping function that indicates the set
of IoT nodes that send their requests to cloud server k, and
h−1(k) is a mapping function that indicates the set of fog
nodes that offload requests to cloud server k. Equation for l′k,
the arrival rate of type Heavy requests to cloud server k, is
derived similarly to Eq. (29) by substituting γ′i and C ′j .

K. Waiting Time of Cloud Server

We model the cloud server k with mk internal processing
units as mk M/G/1 queuing systems, with a load balancer
that places the requests (uniformly) in the processing units.
Thus, the total arrival rate to each M/G/1 queue is given by
Λk =

lk+l
′
k

mk
. Since we assume that the load balancer distributes

the requests uniformly to the processing units, the average
waiting time at a cloud server is equal to the average waiting
time of one its processing units (Hk = ∆k).

In order to obtain the average waiting time of a processing
unit at the cloud server k, we use the Pollaczek-Khinchine
formula to determine the average queue length, and use Little’s
law to obtain the average waiting time. Thus, the average
waiting time of a processing unit at the cloud server k will
be:

∆k =
2ρk + Λ2

kσ
2
k − ρ2k

(2− 2ρk)Λk
, ρk = ΛkE(Sk). (30)

where E(Sk) and σ2
k are the overall average and variance of

service time of a request at a given processing unit of the cloud
server k, respectively. At a processing unit of the cloud server
k, the service time for a Light request, sk is exponentially
distributed with an average service time of Zk, and the service
time for a Heavy request, s′k is exponentially distributed with
an average service time of Z′k. We can derive E(Sk) and σ2

k

as:

E(Sk) = (
lk

lk + l′k
) · Zk + (

l′k
lk + l′k

) · Z′k, (31)

σ2
k = E(S2k)− E(Sk)2, where

E(S2k) = (
lk

lk + l′k
) · E(s2k) + (

l′k
lk + l′k

) · E(s′2k ). (32)

V. NUMERICAL EVALUATION

In this section we evaluate the proposed mechanism through
simulation, and also compare the simulation results with our
analytical model. We first discuss the simulation settings in
the following subsection, and then explain the results in the
next subsection.

A. Simulation Settings

1) Network Topology: The network topology is a graph
(hierarchical, similar to Fig. 1) with 500 IoT nodes, 25 fog
nodes, and 6 cloud servers. The IoT node either processes its
own request, or sends it to its corresponding fog neighbor or
to one of the cloud servers. If the request is sent to the fog
layer, based on the proposed scheme, the request could be
offloaded to other fog nodes or to the cloud. The topology
of the fog nodes in the fog layer is generated randomly in
each experiment using a random graph generator with average
node degree of 3. IoT nodes are associated with the fog node
that has the smallest distance from them (i.e. has the smallest
propagation delay).

2) Link Bandwidth: If an IoT node generates type Light re-
quests (e.g. sensor), the communication between the IoT node
and its corresponding fog node is assumed to be through IEEE
802.15.4, or NB-IoT, or ZigBee, in which the transmission
rates are 250 Kbps. If the IoT node generates Heavy requests
(e.g. traffic camera), the communication between the IoT node
and its corresponding fog node is assumed to be through IEEE
802.11 a/g, and the transmission rate is 54 Mbps. The link rates
between fog nodes in one domain are 100 Mbps and the link
rates on the path from fog nodes to cloud servers are 10 Gbps.

3) Propagation and Transmission Delay: The propaga-
tion delay can be estimated by halving the round-trip time,
RTT , which itself can be expressed as RTT (ms) = 0.03 ×
distance (km)+5 [18]. Using this, we assume the propagation
delay between the IoT nodes and the fog nodes, among
fog nodes, and between fog nodes and the cloud servers
are uniformly distributed between U[1,2], U[0.5,1.2], and
U[15,35] respectively (in ms). Request lengths are exponen-
tially distributed with an average length of 100 bytes for light
processing tasks, and 80 KB for heavy processing tasks. We
assume that the length of the response is the same as the length
of its corresponding request, on average.

4) Processing Delay: To obtain realistic values for the
processing ratio of IoT nodes to fog nodes, we looked at the
processing capabilities of the Arduino Uno R3 microcontroller
(an example of IoT node generating Light requests) and an
Intel dual-core i7 CPU (an example of fog node). In the worst
case, a fog node’s processing capability is found to be around
3000 times faster than that of an IoT node generating type
Light requests (“Fog-to-IoT-Light ratio”), and 200 times faster
than that of an IoT node generating type Heavy requests (‘Fog-
to-IoT-Heavy ratio”). We also assume that a cloud server is
100 times faster than a fog node (“Cloud-to-Fog ratio”), on
average, and that the average processing time of IoT node for
Light and Heavy requests is 30 ms and 400 ms, respectively.
Other simulation parameters are summarized in Table IV
for 5 different settings for parameters. To account for the
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TABLE IV
SIMULATION PARAMETERS (pFi VALUES ARE SHOWN FOR AFP)

Setting pIi pFi bi θj eM γi γ′i q
1 0 1 0.8 0.2 1 0.1 0.25 -
2 0 0.85 0.5 0.0002 - 0.5 0.6 0.5
3 0.1 0.75 - 0.2 1 0.05 0.005 0.5
4 - - 0.9 0.0002 1 0.01 0.001 0.5
5 0 0.75 0.02 0.0002 1 0.1 0.05 0.5

variation of values of the above parameters in real IoT-fog-
cloud applications, we altered the parameters uniformly as:
Fog-to-IoT-Light ratio, U[500,4000]; Fog-to-IoT-Heavy ratio,
U[100,400]; and Cloud-to-Fog ratio, U[50,200]; we found that
the result (average delay) fluctuates only by -0.77% to +5.51%.

5) Operation Modes: To see the benefits of the proposed
offloading scheme, we compare the average service delay in
three modes of the IoT-fog-cloud operation. The proposed
scheme is labeled as All Fog Processing (AFP), while other
possible modes are labeled Light Fog Processing (LFP) and
No Fog Processing (NFP). In No Fog Processing (NFP) mode,
the IoT node either processes its own requests, or sends them
directly to the cloud (that is, no request is sent to the fog). In
this case, pFi = 0, and pCi = 1− pIi for both Light and Heavy
request types. Conversely, the other two modes benefit from
processing requests in the fog layer.

In All Fog Processing (AFP) mode, the IoT node either
processes its own requests, or sends them to the fog or to the
cloud; in AFP, both request types Light and Heavy can be sent
to and processed in the fog layer. The values of pIi and pFi are
as shown in Table IV, and are the same for both type Light and
type Heavy requests. Light Fog Processing (LFP) is similar to
AFP in all the cases, except that only type Light requests could
be sent to the fog layer, and type Heavy request must be sent
to the cloud if they are not processed at the IoT nodes. Said
differently, type Heavy requests could be either processed at
the IoT node or in the cloud, but type Light requests could
be processed at IoT, fog, or cloud. In this case, the values of
pIi and pFi for type Light requests are as shown in Table IV;
however, for Heavy requests, pIi is as shown in Table IV, but
pFi is set to 0. In all the cases, the value of pCi is determined
by pCi = 1− pIi − pFi .

6) Figure Settings: 5 different parameters for the scheme
settings are considered in the simulation results, and these
settings are summarized in Table IV. Each sample point in
the graphs for simulation is obtained using 1 million requests
using an event-driven simulation. For even more detailed
analysis, the delay for type Light and Heavy requests is plotted
separately for the three modes in the color figures (Namely,
AFPH and AFPL). All time units are in ms. In Fig. 4b and
4d, in addition to simulation values (black), the results of our
analytical model are plotted (gold), to show the accuracy of
the analytical model.

B. Numerical Results

Figure 4a shows the average delay as a function of fairness
parameter q. For this figure, the simulation Setting 1 in Table
IV is used. Recall that q is the fairness parameter, and when
q is closer to 1, more priority is given to light processing
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Fig. 4. Simulation results. In figures (b) and (d) simulation values are
compared with analytical model values.

tasks. Thus when q is closer to 1, the delay of light processing
tasks is decreased and the delay of heavy processing tasks is
increased. Note that this change is only seen in AFP, as the
fairness parameter q is not defined in NFP (there is no fog)
and LFP (all Light requests).

Figure 4b shows the average service delay as a function
of eM (obtained using simulation Setting 2). For AFP, the
optimal value of eM where the service delay is minimum
is achieved for eM = 1 using the parameters mentioned in
simulation Setting 2, and when eM > 5, AFP performs worse
than NFP. It is interesting to see that changes in eM do not
change the average service delay in LFP, since the incurred
transmission and propagation delay to offload a request among
fog nodes is negligible for Light requests with small length.
The suffix “-anl” in the legend of the figures denotes the
analytical model values for the corresponding mode of the
policy. It can be inferred that the analytical model results
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closely match with the simulation values.
Figure 4c and 4d (obtained using simulation Setting 3) show

the average service delay as a function of bi, the probability
that a generated request at IoT node i is type Light. Figure
4c shows that the average service delay for both Heavy and
Light requests do not change notably when the percentage
of Light and Heavy requests change. This is because we
are looking at each of the task types separately, and this is
oblivious to the effect of bi. By comparing the delay of Light
and Heavy processing tasks in Fig. 4c for the three modes, it
is clear that the AFP has the lowest average delay. Figure 4d
illustrates the interesting relationship between average service
delay (of combined Light and Heavy requests) in the three
modes, while bi changes. It can be seen that AFP, in general,
outperforms LFP and NFP in terms of average service delay;
however, when the percentage of Light requests in the network
increases, LFP’s performance gets closer to that of AFP. This
is due to having fewer heavy processing tasks in the network
that make the average service delay larger.

Figure 4e and 4f (obtained using simulation Setting 4) show
the effects of pIi , pFi , and pCi on the average service delay.
Both figures show how the average service delay is reduced
under each policy when the probability of sending requests to
fog nodes increases. In Fig. 4e, ∀i : pIi = 0 and it is clear
that the performance of both LFP and AFP is better than that
of NFP, as the delays in all the cases are lower. For Fig. 4f,
∀i : pIi = 0.2 and it can be seen that the overall delay has
been increased, due to the weak processing capabilities of IoT
nodes. Yet, the overall delay is decreased to from 60 ms to 18
ms for light processing tasks, and from 150 ms to 117 ms, for
heavy processing tasks. In this figure, it is also evident that
the performance of LFP and AFP is better than that of NFP.

In the rest of this section, we study the results of some
modification to the proposed offloading policy. Figure 5a is
shown to understand the benefits of offloading Heavy and
Light requests to the cloud when the number of offloads of
requests reaches eM (simulation Setting 5). In this modifica-
tion, when the number of offloads reaches eM, Heavy requests
are always offloaded to the cloud, whereas only a certain
percentage of type Light requests are offloaded to the cloud.
This percentage is represented on the x-axis of Fig. 5a. It can
be seen that if type Light requests are not offloaded to the
cloud when the number of offloads reaches eM, service delay
is minimum. This is due to the large propagation delays from
the fog nodes to the cloud for type Light requests, relative to
their small processing delays. This figure suggests that it is
better to accept the type Light requests at a fog node, instead
of sending them to the cloud, when eM is reached. Note that
in this figure, service delay does not change noticeably for
LFP. This is because the value of θj is big enough for Light
requests, that offloading does not happen much.

Figure 5b (simulation Setting 3) shows the effects of vari-
ance in the rate of generating requests from IoT nodes (γi
and γ′i). The black points in the figure (with suffix “V=0”) are
obtained when there is no variance in the rate of generating
requests, and the color points are obtained when there is some
variance in the rate of generating requests. For the color points,
the rate of generating requests is a normal distribution with
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Fig. 5. Comparison of variations in the proposed policy and other policies.

standard deviation equal to the average rate of generating
requests. In both cases, the average rates of generating requests
are γi = 0.05 and γ′i = 0.005, as reported in Table IV for
simulation Setting 3. It is perceived that when there is variance
in the rates of generating requests, service delay gets larger.
This increase is aggravated when there are more type Heavy
requests in the network, because when there are more type
Heavy requests, the effect of variance in rates of generating
requests is more notable. As seen before, among all modes,
AFP has the best performance, and LFP’s performance gets
closer to that of AFP, when the percentage of Light requests
in the network increases.

Figure 5c (simulation Setting 5) is plotted to compare
the benefits of processing requests in the fog layer (fog, in
general), to the benefits of offloading requests in the fog layer
(proposed offloading policy). Similar to some of the previous
figures, service delay for type Light and Heavy are plotted
separately in these figures. The x-axis represents γ′i, the rate
of generating Heavy requests from IoT nodes. The suffix “(no-
ofld)” in the legend of the figure denotes the mode when
offloading of fog nodes is disabled. In other words, in “(no-
ofld)” if a request is sent to a particular fog node, the fog
node always accepts it regardless of how busy it is. This mode
denotes the general fog node when the proposed offloading
policy is not used. In Fig. 5c, this mode is compared to the
mode when our proposed offloading policy is used.

It is clear that the average service delay for AFP type Light
requests (colored purple) is minimized when the proposed
offloading policy is used. On the contrary, for AFP type Heavy
requests (colored green), the average service delay in the
proposed offloading policy is not always less than that of the
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“(no-ofld)”. When the arrival rate of type Heavy requests in the
network is high, the proposed offloading policy greatly helps
to reduce the average service delay for type Heavy requests.
Yet, when the arrival rate of type Heavy requests is not high
(in this setting when γ′i < 0.041), the proposed offloading
policy has slightly higher average service delay for type Heavy
requests in comparison to “(no-ofld)”. So when arrival rate of
type Heavy requests in a network is high, it is beneficial to
use the proposed offloading policy.

In Fig. 5d (simulation Setting 5) we compare the perfor-
mance of our scheme with that of the scheme proposed in
[13], referred to as “index policy”. In the index policy, for task
assignment, edge clouds (cloud servers deployed at the edge
of the network) calculate a number (called index) based on
their queueing status, and broadcast this number to the mobile
subscribers. Mobile subscribers will then select an edge cloud
with the smallest index, and send their request to it. We can
consider mobile subscribers as IoT nodes and the edge clouds
as fog nodes and compare the performance our scheme with
that of the index policy. Extra parameters of the index policy
are set as: ξn = 1 and η = 0.2.

The delay for type Light and Heavy requests in the index
policy is denoted in Fig. 5d by “INDEXL” and “INDEXH”,
respectively. We can see that our scheme (AFP) performs
better than the index policy. The delay of type Light and Heavy
in AFP are significantly less that the delay of type Light and
Heavy in the index policy. This is because the propagation
delay and transmission rate between IoT nodes and fog nodes
are not considered in the index policy; the index is simply
calculated based on the fog node’s queue status only. The LFP
mode is drawn in this figure as an upper bound for the delay
of type Heavy requests. As seen in other figures, the delay of
type Light requests in AFP and LFP are very close.

VI. CONCLUSION

The vision of fog computing is studied in this paper as a
complement to cloud computing and an essential ingredient of
the IoT. We introduced a framework for handling IoT request
in the fog layer and an analytical model to formulate service
delay in the IoT-fog-cloud scenarios. We showed how our
delay-minimizing fog offloading policy can be beneficial for
the IoT. Various numerical results are included to support our
claims by showing how changes in parameters could affect the
average service delay, and to show how our analytical model
can be used to describe the performance of the policy.

Our analytical model can support other fog computing
policies. For example, when the decision to offload a task is
not based on queueing status, one can replace Pj and Lij , with
the desired equations based on their policy. As future work,
one can consider additional dimensions of IoT requests, such
as the amount of data that the request carries. Additionally, one
can propose an approach to adjust fog nodes’ threshold (θj’s)
dynamically. Moreover, it may be interesting to investigate
delay, cost, and energy tradeoffs in fog offloading schemes.
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