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Outline
• Intro: Distributed Machine Learning (DML) 


• Based on Tiffany Tuor et al. “Distributed Machine Learning in 
Coalition Environments: Overview of Techniques” 


• 1- Training


• 2- Test/Inference 


• Recent work in DML


• Paper review


• Chen, Lingjiao, Hongyi Wang, and Dimitris Papailiopoulos. "Draco: 
Robust Distributed Training against Adversaries." (SysML 2018). 
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Intro: Distributed Machine Learning

Part 1



Introduction

• Machine Learning


• Benefits


• Applications


• ML is resource-intensive


• Distributed Machine Learning (DML)
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Distributed Machine 
Learning

• 1- Distributed training


• Scalability


• Improve performance 


• 2- Distributed test/inference 


• Reduce bandwidth


• Reduce delay


• E.g. in edge computing and IoT
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Training
• Loss function


• Supervised vs. unsupervised


• Loss function:


• Soft-SVM


• Logistic regression


• K-means
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l(w, x, y) = λ |w |2 + max(0,1 − y(w . x))

l(w, x, y) = log(1 + exp(−y(w . x)))

l(w, x) = mink |x − w(k) |2



• Training Data


• Tuples 


• Overall Loss
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D

(x, y)

L(w) =
1

|D | ∑
(x,y)∈D

l(w, x, y)

Training



• 1- Deterministic (GD)


• Over all training data 


• 2- Stochastic (SGD)


• Over (random) subset of training data 


• Size of      ->  Mini-batch size 


•  


• Theorem: When the samples in   ︎  are uniformly drawn (without 
replacement) from    , we have 


• Distributed?
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D̃

L̃(w) =
1

| D̃ | ∑
(x,y)∈D̃

l(w, x, y)

E(L̃(w)) = L(w) E(▽L̃(w)) = ▽ L(w)

D̃

D̃
D

Gradient Descent
w(t) = w(t − 1) − η∇L(w(t − 1))



Distributed Gradient 
Descent (DGD)

• There are N different nodes


• Each node n has a local training dataset 
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Dn



• No need to send all of the date to all nodes


• Just need gradients locally


• Deterministic 


• Stochastic


• Synchronization: weighted average of local weights


• weight: size of local data
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Distributed Gradient 
Descent (DGD) - steps

wn(t) = wn(t − 1) − η∇Ln(w(t − 1)) D = ⋃
n

Dn

wn(t) = wn(t − 1) − η∇L̃n(w(t − 1)) D̃ = ⋃
n

D̃n



• Theorem 2. When                               for all n, after 
performing local deterministic gradient descent 
according to step(3) and computing w(t) according to 
step(5), we have: 
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DGD is same as GD

wn(t − 1) = w(t − 1)

w(t) = w(t − 1) − η∇L(w(t − 1))



• Data samples in        is drawn at each node 
independently, from its local dataset   


• Theorem2 holds for stochastic GD if


• In general, distributed and centralized gradient 
descents are not equivalent when there are multiple 
steps of local iteration between synchronization


• Large value of     saves bandwidth (but impacts 
learning accuracy)  (comm vs. comp tradeoff: [1])
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Notes on DGD
D̃n

Dn
| D̃n |
|Dn |

=
| D̃ |
|D |

τ > 1

τ

[1] S. Wang, et al. “When edge meets learning: Adaptive control for resource-constrained distributed machine 
learning,” in Proc. of IEEE INFOCOM, 2018 
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2- Distributed Test
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2- Distributed Test
• Pipeline of modules/functions


• Modules may run on separate physical nodes


• E.g. run few layers on edge, more layers in cloud


• Data size gets smaller as it traverses to cloud


• Saves bandwidth, delay. Improves privacy


• Optimization: How to partition the model onto nodes


• For faster test (minimize test time)
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Paper Review 

Part 2



Recent Paper Review
• DRACO 


• SysML 2018


• Extended: ICML 2018
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Draco Introduction
• Challenge: Robustness in DML


• Failure of nodes


• Adversarial nodes <—


• In both cases:


• During training <—


• During test
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Draco Motivation
• State of the art


• Synchronized training


• Geometric median, rather than average


• (addresses up to 1/2 adversaries)


• Shortcoming


• Calculating geometric median is computationally 
intensive
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Draco Idea
• Idea: redundancy!


• Allow node to evaluate redundant gradients


• Parameter Server (PS) can 


• Detect adversaries (defend via majority)


• Recover correct average from non-adversaries 


• More redundancy, more robustness 
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Draco Framework
• Uses mini-batch (distributed) SGD


• PS stores a global model


• Data is distributed among P nodes


• During computation phase on mini batch, each node 
samples B/P data points from its local subset of data


• Ship gradients to PS. Then PS applies to global model. 
Sends update back to workers
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w(t) = w(t − 1) −
η

|Dk | ∑
(x,y)∈Dk

∇L(w(t − 1))



Draco Adversaries
• Adversaries: A compute node is considered to be an 

adversarial node, if it does not return the prescribed 
gradient update given its allocated samples. Such a 
node can ship back to the PS any arbitrary update of 
dimension equal to that of the true gradient. 


• Even one adversary can fail the model to converge


• Draco: robustness by algorithmic redundancy while 
guaranteeing an identical model to that of mini-batch 
SGD in the adversary-free case 

!23



Draco Robustness

• Instead of relying on PS, nodes will do more gradients


• Instead of B/P gradients, they calc r.B/P


• Up to (r - 1)/2 adversarial (50%) with no effect


• To tolerate s adversaries, r > 2s


• Borrow from coding theory: cyclic code, repetition code
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Majority Voting
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Draco Framework

• Divide compute nodes in (2s+1) groups


• In each group, all nodes compute the average of a set 
of exactly the same gradients


• Each nodes sends their respective sum back to the PS. 
The PS aggregates these sums to update the model 


• In the same group, PS computes majority
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Draco Majority Voting
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Results
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