
Distributed Machine Learning
Basics and Recent Work

Ashkan Yousefpour October, 2018

Computer Science

University of Texas at Dallas

CS7301-003 Fall 2018

Image borrowed form https://news.sophos.com/en-us/2017/07/24/5-questions-to-ask-about-machine-learning/

Outline
• Intro: Distributed Machine Learning (DML)

• Based on Tiffany Tuor et al. “Distributed Machine Learning in
Coalition Environments: Overview of Techniques”

• 1- Training

• 2- Test/Inference

• Recent work in DML

• Paper review

• Chen, Lingjiao, Hongyi Wang, and Dimitris Papailiopoulos. "Draco:
Robust Distributed Training against Adversaries." (SysML 2018).

!2

Intro: Distributed Machine Learning

Part 1

Introduction

• Machine Learning

• Benefits

• Applications

• ML is resource-intensive

• Distributed Machine Learning (DML)

!4

Distributed Machine
Learning

• 1- Distributed training

• Scalability

• Improve performance

• 2- Distributed test/inference

• Reduce bandwidth

• Reduce delay

• E.g. in edge computing and IoT

!5

Distributed Machine
Learning

• 1- Distributed training

• Scalability

• Improve performance

• 2- Distributed test/inference

• Reduce bandwidth

• Reduce delay

• E.g. in edge computing and IoT

!6

Training
• Loss function

• Supervised vs. unsupervised

• Loss function:

• Soft-SVM

• Logistic regression

• K-means

!7

l(w, x, y) = λ |w |2 + max(0,1 − y(w . x))

l(w, x, y) = log(1 + exp(−y(w . x)))

l(w, x) = mink |x − w(k) |2

• Training Data

• Tuples

• Overall Loss

!8

D

(x, y)

L(w) =
1

|D | ∑
(x,y)∈D

l(w, x, y)

Training

• 1- Deterministic (GD)

• Over all training data

• 2- Stochastic (SGD)

• Over (random) subset of training data

• Size of -> Mini-batch size

•

• Theorem: When the samples in ︎ are uniformly drawn (without
replacement) from , we have

• Distributed?

!9

D̃

L̃(w) =
1

| D̃ | ∑
(x,y)∈D̃

l(w, x, y)

E(L̃(w)) = L(w) E(▽L̃(w)) = ▽ L(w)

D̃

D̃
D

Gradient Descent
w(t) = w(t − 1) − η∇L(w(t − 1))

Distributed Gradient
Descent (DGD)

• There are N different nodes

• Each node n has a local training dataset

!10

Dn

• No need to send all of the date to all nodes

• Just need gradients locally

• Deterministic

• Stochastic

• Synchronization: weighted average of local weights

• weight: size of local data

!11

Distributed Gradient
Descent (DGD) - steps

wn(t) = wn(t − 1) − η∇Ln(w(t − 1)) D = ⋃
n

Dn

wn(t) = wn(t − 1) − η∇L̃n(w(t − 1)) D̃ = ⋃
n

D̃n

• Theorem 2. When for all n, after
performing local deterministic gradient descent
according to step(3) and computing w(t) according to
step(5), we have:

!12

DGD is same as GD

wn(t − 1) = w(t − 1)

w(t) = w(t − 1) − η∇L(w(t − 1))

• Data samples in is drawn at each node
independently, from its local dataset

• Theorem2 holds for stochastic GD if

• In general, distributed and centralized gradient
descents are not equivalent when there are multiple
steps of local iteration between synchronization

• Large value of saves bandwidth (but impacts
learning accuracy) (comm vs. comp tradeoff: [1])

!13

Notes on DGD
D̃n

Dn
| D̃n |
|Dn |

=
| D̃ |
|D |

τ > 1

τ

[1] S. Wang, et al. “When edge meets learning: Adaptive control for resource-constrained distributed machine
learning,” in Proc. of IEEE INFOCOM, 2018

Distributed Machine
Learning

• 1- Distributed training

• Scalability

• Improve performance

• 2- Distributed test/inference

• Reduce bandwidth

• Reduce delay

• E.g. in edge computing and IoT

!14

2- Distributed Test

!15

2- Distributed Test
• Pipeline of modules/functions

• Modules may run on separate physical nodes

• E.g. run few layers on edge, more layers in cloud

• Data size gets smaller as it traverses to cloud

• Saves bandwidth, delay. Improves privacy

• Optimization: How to partition the model onto nodes

• For faster test (minimize test time)

!16

Paper Review

Part 2

Recent Paper Review
• DRACO

• SysML 2018

• Extended: ICML 2018

!18

Draco Introduction
• Challenge: Robustness in DML

• Failure of nodes

• Adversarial nodes <—

• In both cases:

• During training <—

• During test

!19

Draco Motivation
• State of the art

• Synchronized training

• Geometric median, rather than average

• (addresses up to 1/2 adversaries)

• Shortcoming

• Calculating geometric median is computationally
intensive

!20

Draco Idea
• Idea: redundancy!

• Allow node to evaluate redundant gradients

• Parameter Server (PS) can

• Detect adversaries (defend via majority)

• Recover correct average from non-adversaries

• More redundancy, more robustness

!21

Draco Framework
• Uses mini-batch (distributed) SGD

• PS stores a global model

• Data is distributed among P nodes

• During computation phase on mini batch, each node
samples B/P data points from its local subset of data

• Ship gradients to PS. Then PS applies to global model.
Sends update back to workers

!22

w(t) = w(t − 1) −
η

|Dk | ∑
(x,y)∈Dk

∇L(w(t − 1))

Draco Adversaries
• Adversaries: A compute node is considered to be an

adversarial node, if it does not return the prescribed
gradient update given its allocated samples. Such a
node can ship back to the PS any arbitrary update of
dimension equal to that of the true gradient.

• Even one adversary can fail the model to converge

• Draco: robustness by algorithmic redundancy while
guaranteeing an identical model to that of mini-batch
SGD in the adversary-free case

!23

Draco Robustness

• Instead of relying on PS, nodes will do more gradients

• Instead of B/P gradients, they calc r.B/P

• Up to (r - 1)/2 adversarial (50%) with no effect

• To tolerate s adversaries, r > 2s

• Borrow from coding theory: cyclic code, repetition code

!24

Majority Voting

!25

Draco Framework

• Divide compute nodes in (2s+1) groups

• In each group, all nodes compute the average of a set
of exactly the same gradients

• Each nodes sends their respective sum back to the PS.
The PS aggregates these sums to update the model

• In the same group, PS computes majority

!26

Draco Majority Voting

!27

Results

!28

Results

!29

Results

!30

