Distributed Machine Learning

Basics and Recent Work

Computer Science
University of Texas at Dallas October. 2018
CS7301-003 Fall 2018

Ashkan Yousefpour

Image borrowed form https://news.sophos.com/en-us/2017/07/24/5-questions-to-ask-about-machine-learning/

Outline

* |ntro: Distributed Machine Learning (DML)

* Based on Tiffany Tuor et al. “Distributed Machine Learning in
Coalition Environments: Overview of Techniques”

* 1- Training

e 2- Test/Inference
* Recent work in DML

* Paper review

* Chen, Lingjiao, Hongyi Wang, and Dimitris Papailiopoulos. "Draco:
Robust Distributed Training against Adversaries." (SysML 2018,).

Intro: Distributed Machine Learning

Introduction

e Machine Learning
e Benefits
e Applications
e ML is resource-intensive

e Distributed Machine Learning (DML)

Distributed Machine
Learning

e 1- Distributed training
e Scalability
 |mprove performance
e 2- Distributed test/inference
* Reduce bandwidth
* Reduce delay

e E.g.In edge computing and loT

5

Distributed Machine
Learning

e 1- Distributed training

e Scalability

 |mprove performance

Training

e | oss function

e Supervised vs. unsupervised

e |oss function:
I(w,x,y) = Alw], + max(0,1 — y(w.x))
[(w,x,y) = log(l + exp(—y(w . x)))

e K-means I(w, x) = ming | x — w(k) |

Training

e Training Data D

e Tuples (x,y)

e Overall Loss L(w)=—— Z [(w,x,y)

Gradient Descent

wt) =w(it—1)—nVLWw(— 1))

e 1- Deterministic (GD)

* Qver all training data

2- Stochastic (SGD)
e QOver (random) subset of training data D

e Size of D -> Mini-batch size

* Theorem: When the samples in D are uniformly drawn (without
replacement) from D , we have E(Lw) =Lw) ENLw) =YV Lw)

e Distributed?

Distributed Gradient
Descent (DGD)

e There are N different nodes

e Each node n has a local training dataset D,

Synchronization node

EIX:ll'Dnan(t)
' — (B)w(t) « ===1

Local node 1

Local node N

(4) wy () I l(l) Wy (t) < w(t)

For T steps:
(2) t<t+1

. (3) wp(t) « wy(t — 1) = nVL, (wy(t — 1))

Local node n

10

Distributed Gradient
Descent (DGD) - steps

e No need to send all of the date to all nodes
e Just need gradients locally
e Deterministic Wil =w,(t = 1) =nVL,(w(- 1)) D= b,
e Stochastic Wi =w,(t = 1)=nVLwe-1) D=|JD,
e Synchronization: weighted average of local weights

e weight: size of local data

11

DGD iIs same as GD

Synchronization node

Zgzlan|Wn(t)
PR Qo S

Local node N

Local node 1

(4) wy (1) I $(1) Wy (t) < w(t)

. For T steps:
(2) te<t+1
(3) W (t) « wy (t = 1) = nVL, (W (t — 1))

Local node n

e Theorem 2. When w (r—1) = w(t — 1) for all n, after
performing local deterministic gradient descent
according to step(3) and computing w(t) according to

step(5), we have: w(t) =w(it—-1)—nVLWw(— 1))

12

Notes on DGD

e Data samples in Dn Is drawn at each node
independently, from its local dataset D,

e Theorem?2 holds for stochastic GD if

e |n general, distributed and centralized gradient
descents are not equivalent when there are multiple
steps of local iteration between synchronization 7 > 1

e Large value of T saves bandwidth (but impacts
learning accuracy) (comm vs. comp tradeoff: [1])

[1] S. Wang, et al. “When edge meets learning: Adaptive control for resource-constrained distributed machine

learning,” in Proc. of IEEE INFOCOM, 2018
13

Distributed Machine
Learning

o 2- Distributed test/inference
e Reduce bandwidth
* Reduce delay

e E.g.In edge computing and loT

14

2- Distributed Test

(=) &) =)
"""] [1
------- -
[1
E—
- A J
- N
""" ' []
L ¥
------- [[1
e A
— ~
""" ' [[]
— ¥
------- | |
- ¥)
+
..... _[{I\ l]
oo [| ¥
------ | |
- ¥
P
"""] |] 1 | |

2- Distributed lest

Pipeline of modules/functions

Modules may run on separate physical nodes

E.g. run few layers on edge, more layers in cloud
 Data size gets smaller as it traverses to cloud

e Saves bandwidth, delay. Improves privacy
Optimization: How to partition the model onto nodes

e For faster test (minimize test time)

16

Paper Review

Recent Paper Review

e DRACO
e SysML 2018

e Extended: ICML 2018

DRrAco: Robust Distributed Training against Adversaries

Lingjiao Chen, Hongyi Wang, Dimitris Papailiopoulos

University of Wisconsin-Madison

18

Draco Introduction

Parameter Server

e Challenge: Robustness in DML

{' ‘ Model Update
4‘

e Failure of nodes

81~ “ 8P
82
Learner | Learner 2 Learner P

e Adversarial nodes <—

Distributed Training without Adversary

e |In both cases:

e During training <—

e During test

19

Draco Motivation

e State of the art
e Synchronized training
e (Geometric median, rather than average
e (addresses up to 1/2 adversaries)
e Shortcoming

e (Calculating geometric median is computationally
intensive

20

Draco Idea

|dea: redundancy!

Allow node to evaluate redundant gradients
Parameter Server (PS) can

e Detect adversaries (defend via majority)

e Recover correct average from non-adversaries

More redundancy, more robustness

21

Draco Framework

e Uses mini-batch (distributed) SGD

wi) =w(it—-1) — T

Z VLw(t— 1))

| k | (x,y)EDk

e PS stores a global model
e Data is distributed among P nodes

 During computation phase on mini batch, each node
samples B/P data points from its local subset of data

e Ship gradients to PS. Then PS applies to global model.
Sends update back to workers

22

Draco Adversaries

 Adversaries: A compute node is considered to be an
aadversarial node, iIf it does not return the prescribed
gradient update given its allocated samples. Such a
node can ship back to the PS any arbitrary update of
dimension equal to that of the true gradient.

e Even one adversary can fail the model to converge

e Draco: robustness by algorithmic redundancy while
guaranteeing an identical model to that of mini-batch
SGD in the adversary-free case

23

Draco Robusthess

Instead of relying on PS, nodes will do more gradients
e Instead of B/P gradients, they calc r.B/P

Up to (r - 1)/2 adversarial (50%) with no effect

To tolerate s adversaries, r > 2s

Borrow from coding theory: cyclic code, repetition code

24

Majority Voting

/

Majority Voting
}72 +Ig3 g4+ 85 1+ 86
X1 X9 X3
X9 X3 X

2 X5
X3 X1 X1 X6
Group |

25

Draco Framework

Divide compute nodes in (2s+1) groups

In each group, all nodes compute the average of a set
of exactly the same gradients

Each nodes sends their respective sum back to the PS.
The PS aggregates these sums to update the model

In the same group, PS computes majority

20

Draco Majority Voting

Parameter Sever: Decoding and Model Update

Model Update

At most S adversarial
updates

Compute nodes: Gradient Evaluations and Encoding

* __ 5

27

adversaries: 2.2% (SGD)

== = adversaries: 6.4% (SGD)

adversaries: 11.1% (SGD)

Results

mmmm adversaries: 2.2% (GM)
- = adversaries: 6.7% (GM)
adversaries: 11.1% (GM)

adversaries: 2.2% (Proposed Rep)

== = adversaries: 6.7% (Proposed Rep)

adversaries: 11.1% (Proposed Rep)

adversaries: 2.2% (Proposed Cyclic)
adversaries: 6.4% (Proposed Cyclic)
adversaries: 11.1% (Proposed Cyclic)

Cifar|0 on ResNet-|8

®
FETTTIT L A
ﬁé}«x‘" * 45 compute nodes
7.7 :
% * m4.2xlarge instances of EC2
) :
3 * [,3,5 Adversaries
I
[

System in PyTorch + OpenMPI

Testset Accuracy (%)
HNWAUONO®O

CocoocooooC

O 1 2 3 4 5 6 7
Time Cost (min)

le3

28

e [DRACO ~5x faster at 88%

e Median never reaches 90%

2.2% adversaries SGD
== = 6.4% adversaries SGD
11.1% adversaries SGD

N & O ®
© © O

o

Test Accuracy (%)

- o
- T T

-

N
%
¥

T ——

———————

01 2 3 45 6 7 8
Time Cost (min) le2

(a) MNIST,FC,Rev Grad

o

Test Accuracy (%)
o

N & O
et

o

0.00.20.40.60.81.01.2

Time Cost (min) le3

(e) MNIST,EFC,Const

s 2.2% adversaries GM
== == 6.7% adversaries GM

11.1%

-
e e B =
© © © O

20

Test Accuracy (%)

0.0 0.2 0.4 0.6 0.8

Results

adversaries GM

f‘fi’-_ _______________

Time Cost (min) 1e3

(b) MNIST,LeNet,Rev Grad

[
O 0 O
© © O

Test Accuracy (%)
N
o

20

F*"',

0.0 0.2 0.4 0.6 0.8 1.0
Time Cost (min) 1e3

(f) MNIST,LeNet,Const

N & O ®
© © © O

Test Accuracy (%)

o

(c) CIFAR10,ResNet18,Rev Grad

N & O ®
© © O O

Test Accuracy (%)

(=]

m 2.2% adversaries Draco w. Rep.
== = 6.7% adversaries Draco w. Rep.
11.1% adversaries Draco w. Rep.

01 2 3 45 6 7
Time Cost (min) le3

o g
. 3w oase -’ “. ‘,'
- P o~ ZEN -
Fom NSNS
e v \/

0.0 0.2 0.4 0.6 0.8

Time Cost (min) le4

(g) CIFAR10,ResNet18,Const

29

2.2%

adversaries Draco w. Cyclic

== == 6.4% adversaries Draco w. Cyclic

11.1% adversaries Draco w. Cyclic

100
20
80
70
60
50

Test Accuracy (%)

———

01 2 3 45 6 7
Time Cost (min) 1le2

(d) MR,CRN,Rev Grad

[
AN O O
©C 0 00O

Test Accuracy (%)

v
o

......

0.00.20.40.60.81.01.21.4
Time Cost (min) 1e3

(h) MR,CRN,Const

Results

Table 2: Speedups (i.e., X times faster) of DRACO (Repetition/Cyclic Codes) over GM when using a fully-
connected neural network on the MNIST dataset. We run both methods until they reach the same specified
testing accuracy. In the table ‘const” and ‘rev grad’ refer to the two types of adversarial updates.

Test Accuracy | 80% 85% 88% 90%
2.2% const 3.4/2.7 | 3.5/2.8 | 4.8/3.9 | 4.1/3.1
6.7% const 2.7/2.0 | 41/3.1 | 6.0/4.6 | 5.6/4.1
11.1% const | 2.9/2.2 | 4.8/3.7 | 6.1/4.7 | 5.3/3.8

22% rev grad | 2.2/1.9 | 2.4/2.2 | 41/3.7 | 3.2/2.9

6.7% rev grad | 3.1/2.5 | 3.3/3.1 | 5.5/4.8 | 4.5/3.7

11.1% rev grad | 2.7/2.3 | 3.0/2.6 | 3.1/2.7 | 3.1/2.6

30

