
IONN: Incremental Offloading of Neural
Network Computations from Mobile Devices to Edge

Hyuk-Jin Jeong et al. ACM SoCC ‘18

Ashkan Yousefpour November, 2018

Computer Science

University of Texas at Dallas

CS7301-003 Fall 2018

Image borrowed form https://www.talari.com/glossary_faq/edge-computing/

Outline
• Introduction

• Motivation

• System Model

• DNN Partitioning

• IONN Architecture

• Evaluation Results

!2

Introduction
• Deep Neural Network (DNN) models are compute intensive

• On IoT Devices? Energy and latency

• In the Cloud? Yes. Cloud ML APIs: Google, HP, AWS, etc.

• Hybrid! Ok, install

• Pre-install in the cloud?

• YES! But what about edge computing?

• Pre-install on edge servers?

• NO! How about on-demand install?

• NO! large upload delay

!3

Introduction

• Idea: incremental offloading of DNN model

• 1-partition >>>> 2-order >>>> 3-offload

• Edge server incrementally builds DNN

• Client can offload DNN query before the whole model is
uploaded

• Server is faster than client

!4

Prior Work

Kang, Yiping, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.  
"Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGPLAN Notices 52, no. 4 (2017): 615-629.

Client Server Collaboration
Client

!6

Client Server Collaboration
Client Edge Server

!7

Client Server Collaboration
Client Edge Server

!8

Motivation

• Smart glass cognitive assistance (eye-sight)

!9

Motivation

• Client: Board Odroid XU4 with (2.0GHz/1.5GHz 4 cores)
and 2GB memory

!10

Motivation
• Server: x86 CPU (3.6GHz 4 cores), GTX 1080 Ti GPU, and

32GB memory

!11

Motivation

!12

Motivation
• Incremental offload! Assume IONN+VM is pre-installed

!13

IONN: System Model

• Observation: Trained DNN can be saved in a file

• Can load a pre-trained DNN from the file and perform
inference

• In the runtime phase, IONN creates an uploading plan

• DNN partitions and their uploading order

!14

NN Execution Graph

!15

Partitioning Algorithm

• It is impossible to find an optimal solution unless we fully know
the future occurrence of queries -> heuristic

• 1- Prefer uploading DNN layers whose performance benefit
is high and uploading overhead is low

• 2- Do not send unnecessary DNN layers, that do not result
in any performance increase,

• Optimal state: layer upload time = 0 (whole model is uploaded)

• The solution is execution path with the best query
performance with collaborative execution

!16

Partitioning Algorithm

• If the value of K is small, will let the partitioning algorithm finish faster,
making a few, large DNN partitions.

• A large K will lead to many iterations and create many, small DNN partitions.
!17

Partitioning Example

!18

IONN Architecture

!19

Async. Upload and
Execution

!20

Multiple Paths in DNN

!21

Results: Incremental
Upload Overhead

!22

Results: Execution Time

!23

Results: Prediction Function
Accuracy

!24

Results: Throughput vs.
Energy

!25

Thank you!

