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Introduction
• Deep Neural Network (DNN) models are compute intensive


• On IoT Devices? Energy and latency


• In the Cloud? Yes. Cloud ML APIs: Google, HP, AWS, etc.


• Hybrid! Ok, install


• Pre-install in the cloud? 


• YES! But what about edge computing?


• Pre-install on edge servers?


• NO! How about on-demand install?


• NO!  large upload delay
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Introduction

• Idea: incremental offloading of DNN model


• 1-partition >>>> 2-order >>>> 3-offload


• Edge server incrementally builds DNN


• Client can offload DNN query before the whole model is 
uploaded


• Server is faster than client
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Client Server Collaboration
Client
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Client Server Collaboration
Client Edge Server
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Client Server Collaboration
Client Edge Server
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Motivation

• Smart glass cognitive assistance (eye-sight)
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Motivation

• Client: Board Odroid XU4 with (2.0GHz/1.5GHz 4 cores) 
and 2GB memory 
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Motivation
• Server: x86 CPU (3.6GHz 4 cores), GTX 1080 Ti GPU, and 

32GB memory
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Motivation
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Motivation
• Incremental offload! Assume IONN+VM is pre-installed
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IONN: System Model

• Observation: Trained DNN can be saved in a file


• Can load a pre-trained DNN from the file and perform 
inference 


• In the runtime phase, IONN creates an uploading plan


• DNN partitions and their uploading order 
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NN Execution Graph
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Partitioning Algorithm

• It is impossible to find an optimal solution unless we fully know 
the future occurrence of queries   ->   heuristic 


• 1- Prefer uploading DNN layers whose performance benefit 
is high and uploading overhead is low


• 2- Do not send unnecessary DNN layers, that do not result 
in any performance increase, 


• Optimal state: layer upload time = 0  (whole model is uploaded) 


• The solution is execution path with the best query 
performance with collaborative execution 
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Partitioning Algorithm

• If the value of K is small, will let the partitioning algorithm finish faster, 
making a few, large DNN partitions. 


• A large K will lead to many iterations and create many, small DNN partitions.
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Partitioning Example
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IONN Architecture
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Async. Upload and 
Execution
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Multiple Paths in DNN
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Results: Incremental  
Upload Overhead

!22



Results: Execution Time
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Results: Prediction Function 
Accuracy
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Results: Throughput vs. 
Energy
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Thank you!


