Internet Edge
of Things Computing

Cloud

Realtime Data Processing

IONN: Incremental Offloading of Neural

Network Computations from Mobile Devices to Edge

Hyuk-Jin Jeong et al. ACM SoCC ‘18

Computer Science
University of Texas at Dallas November. 2018
CS7301-003 Fall 2018 |

Ashkan Yousefpour

Image borrowed form https://www.talari.com/glossary_fag/edge-computing/

Introduction
Motivation
System Model
DNN Partitioning
IONN Architecture

Evaluation Results

Outline

Introduction

* Deep Neural Network (DNN) models are compute intensive
e On loT Devices? Energy and latency
e |n the Cloud? Yes. Cloud ML APIs: Google, HP, AWS, etc.
e Hybrid! Ok, install
e Pre-install in the cloud?
* YES! But what about edge computing?
e Pre-install on edge servers?
. | How about on-demand install?

. | large upload delay

Introduction

|dea: incremental offloading of DNN model

e 1-partition >>>> 2-order >>>> 3-offload

Edge server incrementally builds DNN

Client can offload DNN query before the whole model is
uploaded

Server is faster than client

4

Prior Work

Joe ‘v

a. Status quo

Jo A

b. Mobile-only

. [2.41,087] . .
‘ % > o2 087 ™
(X

C. Neurosurgeon

——
S

Approach Approach Approach
[Communication [Computation 1 Communication EEE Computation |
1.0 1.0 1.0
07% 2.5 2.5
0.8 b 1 08b 1 08b] 0L 1 20l
206 f 1 0.6F 1 0.6F] S5k b 150
) >
= B
o 5
S 04 1 04 S OLOF- PR 1 10L-
0.2} 4 02} 05 4 b 1 o5}
. . 0.0 . . 0.0 0.0
Cloud Cloud Cloud Mobile Mobile Cloud Cloud Cloud Cloud Mobile Mobile

3G LTE Wi-Fi
(a) Communication

CPU GPU GPU 3G LTE Wi-Fi
(b) Computation

CPU GPU
(¢) End-to-end

Figure 3: Latency breakdown for AlexNet (image classification). The

cloud-only approach is often slower than mobile execution due to the
high data transfer overhead.

Cloud Cloud Cloud Mobile Mobile Cloud Cloud Cloud Mobile Mobile
3G LTE Wi-Fi CPU GPU 3G CPU GPU

(a) Communication (b) Computation

LTE Wi-Fi
(c¢) Total

Figure 4: Mobile energy breakdown for AlexNet (image classification).
Mobile device consumes more energy transferring data via LTE and
3G than computing locally on the GPU.

Kang, Yiping, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
"Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGPLAN Notices 52, no. 4 (2017): 615-629.

Client Server Collaboration

Client

Client Server Collaboration

Client Edge Server

Client Server Collaboration

Client Edge Server

-

Motivation

e Smart glass cognitive assistance (eye-sight)

Subway station Client

-

1.3 sec/query
(ARM CPU)

Motivation

e Client: Board Odroid XU4 with (2.0GHz/1.5GHz 4 cores)
and 2GB memory

Subway station Client

_ “
R ‘9

1.3 sec/query
(ARM CPU)

10

Motivation

e Server: x86 CPU (3.6GHz 4 cores), GTX 1080 Ti GPU, and
32GB memory

Subway station Client

1.3 sec/query Cloud Server
(ARM CPU) latenc .
y. o E
S

0.001 sec/query
(NVIDIA GPU)

11

Motivation

Edge Server

Subway station Client
0.001 sec/query

@ (NVIDIA GPU)
1.3 sec/query Cloud Server
(ARM CPU) 1atenc
y o E
S

0.001 sec/query
(NVIDIA GPU)

12

Motivation

* Incremental offload! Assume IONN+VM is pre-installed

Subway station

—. 4

Uploading AlexNet takes
~24 seconds in Edge Server

80 Mbps Wireless network ™

Client [358] .
~, WS 0.001 sec/query
\a‘egc‘i ' (NVIDIA GPU)
1.3 sec/query Cloud Server
(ARM CPU) 1atency: i
Oms

0.001 sec/query
(NVIDIA GPU)

13

JONN: System Model

e Observation: Trained DNN can be saved in a file

e Can load a pre-trained DNN from the file and perform
inference

e In the runtime phase, IONN creates an uploading plan

e DNN partitions and their uploading order

14

NN Execution Graph

Input@)o

1
l
T et trangion(2
A Client’s time (a) Server’s execution time +
execution « 1 Layer upload time (A)
time (A) (3 o\ 3
SURSITN
o’@ A\
Input
4
A
_ nput transfer 6
B B Cller.wt S Ime (B) Server’s execution time +
exgcutn(c;r; a(\sﬁe(Layer upload time (B)
C time x
0 N (6
o o \®
O e 0
Output
7
|
Nput transfe,- @
C Client’s 'me (C) Server’s execution time +
execution s"?’(Layer upload time (C)
time (C) E°
2\

Partitioning Algorithm

e |t is impossible to find an optimal solution unless we fully know
the future occurrence of queries -> heuristic

 1- Prefer uploading DNN layers whose performance benefit
IS high and uploading overhead is low

e 2- Do not send unnecessary DNN layers, that do not result
iIn any performance increase,

e Optimal state: layer upload time = 0 (whole model is uploaded)

 The solution is execution path with the best query
performance with collaborative execution

16

Partitioning Algorithm

Algorithm 1 DNN Partitioning Algorithm

Input: DNN model description, DNN execution profile, predic-
tion functions, network speed, K (positive number less

than 1)
Output: Uploading plan (a list of DNN partitions)

1: procedure PARTITIONING

2 partitions < | |;

3: n <« 0;

4 Create NN execution graph using input parameters;

5 while K" > 0.01 do > Until layer upload time be-

comes =~ 0

6: Search for the shortest path in the NN execution
graph;

7: Create a DNN partition and add it to partitions;

8: Update the edge weights of the NN execution graph
by multiplying K to layer upload time;

9: n<«—n+1;

10: return partitions

e If the value of K is small, will let the partitioning algorithm finish faster,
making a few, large DNN partitions.

* Alarge K will lead to many iterations and create many, small DNN partitions.
17

Partitioning Example

Server’s execution time + Layer upload time

Iteration

Uploading
plan

@—>@ : Shortest path Layers

18

: DNN partition

IONN Client
»
DNN j DNN Execution
query Runtime
-<

install

DNN :> Client E>
model Profiler DNN Execution

—

JONN Architecture

Asynchronous
DNN uploading

-
Collaborative

DNN execution

partitioning plan

1y

Partitioning Engine |«

IONN Server
>
DNN Execution
Runtime
>
delivered when a client
, =D

connects to this server

Profile

Server
Profiler

—» : data flow over device boundary

———— e - ————

o [regression] oy [

Engine Prediction

Functions

19

:> : data flow inside a device

Async. Upload and
Execution

DNN Execution Runtime DNN Execution Runtime
(Client) (Server)

plan thread ACK thread

DNN partitions _
Partiﬁoningl:> Uploading % i)I 5 Uploading

Input of uploaded
DNN partitions

DNN Execution s > s Execution
queryl:> thread < Result thread

Figure 3: Asynchronous DNN uploading and collaborative
DNN execution in DNN Execution Runtime.

20

Multiple Paths in DNN

Missing

.

Shortest path

(a) Problematic conversion of a DNN with multiple paths (some edges are omitted)

: dominator of output layer I / I

-=% output (A)

A sum of client’s transfer time
::> execution time ~cp UM of server’s
A DY execution time
3 output (B) + Sum of

layer transfer time

4

(b) Building NN execution graph as if there is no multiple paths
21

Results: Incremental
Upload Overhead

Size Number

Name (MB) of layers Reference
AlexNet 233 24 22]
Inception 129 312 37
ResNet 98 245 (15
GoogleNet 27 152 36
MobileNet 16 110 (16

Table 1: DNNs For Evaluation

IONN IONN

Name All at once (K=0.1) (K=0.5)
AlexNet 28.7 30.3 30.7
Inception 16.4 16.7 16.8
ResNet 12.1 12.6 13.0
GoogleNet 3.9 3.9 4.4
MobileNet 2.3 2.5 2.8

Table 2: Uploading Completion Time (second)
22

Query execution time
(second)

Query execution time

(second)

4

AlexNet

Time (second)

ResNet

6 8

10
Time (second)

12

Query execution time

14

(second)

16

1.25

0.75

0.5

0.25

—e— All_at_once
—+—— |ONN(k=0.1)
—=—— |ONN(k=0.5)

Parti| IONN | IONN

tion | (K=0.1) | (K=0.5)
1 1 13@©) | 1.3
2 |76 | 76(7)
3 [223.7 (7)] 223.7 (7)

Size in MB (# of layers)

Parti| IONN | IONN

tion | (K=0.1) | (K=0.5)
1 | 5.6(108) | 5.6 (108)
2 |84.3(134)|27.2 (87)
3 | 7.8(1) |57.2@47)
4 - 7.8 (1)

Size in MB (# of layers)

MobileNet

05 1
Time (second)

23

1.5 2

Query execution time

5
()
E 4
gA
'5'83
>
o O
Q)U
5 82
>
—
g 1
e}

(second)

2.5 3

Inception

10

15
Time (second)

GoogleNet

6

2 3 4 5
Time (second)
Parti| IONN IONN
tion | (K=0.1) | (K=0.5)
1 | 0.5(45) | 0.5(45)
2 11.8 (64) | 5.7 (48)
3 | 39(1) |6.1(16)
4 - 3.9 (1)

Size in MB (# of layers)

Results: Execution Time

Parti| IONN IONN

tion | (K=0.1) | (K=0.5)
1 | 55(76) | 5.5(76)
2 [22.3(233)] 3.3(23)
3 | 85.4(1) |11.9(124)
4 - 5.4 (23)
5 - 1.7 (63)
6 - 85.4 (1)

Size in MB (# of layers)

Parti| IONN IONN

tion | (K=0.1) | (K=0.5)
1 | 26@1) | 2.6 @41)
2 120.2 (107) [10.7 (76)
3 | 392 |95
4 - 3.9 (2)

Size in MB (# of layers)

Results: Prediction Function
Accuracy

Layer R? RMSE Layer R? RMSE
Type (ms) Type (ms)
Conv 0.428 0.025 FC 0.997 1.291
ReLU 0.999 0.001 Softmax 1.000 0.256
Pooling | 0.853 0.002 BatchNorm | 0.953 0.004
LRN 1.000 0.009 Scale 0.953 0.002
Concat | 1.000 0.018 Eltwise 0.991 0.002

Table 3: R and RMSE of Prediction Functions

24

Results: Throughput vs.
Energy

_ 300
<
o
B 200
£
2
S 100
Q
Q 0 .I—‘ .|—| B
Ll
AlexNet Inception ResNet AgeNet GoogleNet MobileNet
B IONN (K=0.5) OAIl_at_once
E(:‘lf::i?sd AlexNet | Inception | ResNet| AgeNet | Googl.eNet| MobileNet
IONN 31 26 6 11 7 3
All at once 20 9 5 8 3 3

Figure 8: Execution time of DNN queries and the size of each
DNN partition in our benchmark DNNs.

25

Thank you!

