
(Artificial) Neural Networks
Details and Examples

Ashkan Yousefpour September, 2018

Computer Science

University of Texas at Dallas


CS7301-003   Fall 2018



Outline
• Introduction


• Perceptron


• Activation Functions


• Exercise


• Training Rule


• Gradient Descent 


• Exercise


• Artificial Neural networks


• Different Types


• Exercises


• Back propagation


• Exercise

!2



Introduction
• Artificial Neural Networks (ANNs) provide interesting alternatives of 

solving variety of problems in different fields of science and 
engineering 


• Human brain


• Ultimate goal of a computer scientist is to create a computer 
that could mimic human brain (e.g. biological neural network)


• ANNs are simplifications of Biological Neural Networks


• ANNs have proven their applicability and importance by solving 
complex problems (e.g. emergence of deep neural networks, 
“deep learning”) 

!3



Motivation for this Lecture

!4

By the end of this lecture, 

we will be able to solve some concrete exercises like this one

Exercise 1



ANN Building Block
• The main component of ANN is perceptron 


• ANN is a combination of many perceptrons, connected in a bigger network


• Perceptron with step activation function 

Picture borrowed from https://www.hlt.utdallas.edu/~vgogate/ml/2018s/lectures/Perceptrons.pdf
!5



Perceptron
• Usually in ANN, the linear unit (sum) and activation unit 

are shown in one circle

Picture borrowed from http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf
!6



Perceptron Example

• Spam Detection


• 3 features (frequency of words “money”, “lottery”, and 
bias)


• spam is “positive” class


• Current weights 


• Email is “win lottery money”   ->   spam

(w0, w1, w2) = (−3,4,2)

W . X = (1)(−3) + (1)(6) + (1)(2) = 5 > 0

!7

Spam!



Perceptron Activation Functions

• Activation functions:


• Identity function


• Step function 


• Sigmoid function (aka “logistic”)


• ReLU function


• See https://en.wikipedia.org/wiki/Activation_function 

!8

https://en.wikipedia.org/wiki/Activation_function


Perceptron implementable Functions

• Exercise: Implement NOT, AND, and OR using perceptron


• Linear functions can be implemented with perceptron (e.g. AND)


• Decision surface of perceptron is hyperplane (line in 2D)

!9



Perceptron Training
• We found a perceptron for AND, OR, NOT


• How about bigger examples, e.g. optical network 
reconfiguration plan given 200 features?


• How can computer find the weights automatically?

!10



Perceptron Training Rule
• Training rule:


•     is learning rate (constant, e.g. 0.1)


•     is the output of perceptron, including activation function


•     is target value (desired)

wi ← wi + Δwi

Δwi = η(t − o)xi

η

o

t

!11



Perceptron Training Rule
• Perceptron training rule is great


• However, what happens if data is not linearly separable


• Goes back and forth


• Will not converge! 


• Need another training rule  


• Gradient descent or gradient ascent 

!12



Gradient Descent

• Gradient descent 

• Let’s think about error 
(or loss) function 


• Can we somehow get 
to the minima?


• Yes. Using gradient
l[W] = E[W] =

1
2 ∑

d∈D

(td − od)2
▽ l[W ]

l(W )

!13



Gradient Descent
• Gradient descent 

• Error function E(W)


• Start randomly from 
somewhere (in the E(W) 
surface)


• Move downwards using 
gradient (will see soon)


• Hopefully you get to global 
minima


• Why not always?

!14
Picture borrowed from https://www.hlt.utdallas.edu/~vgogate/ml/2018s/lectures/Perceptrons.pdf



Perceptron Gradient Descent

• Error function E(W)


•      is set of examples (i.e. data)


• Gradient


• Training rule


• Gradient descent 

E[W] =
1
2 ∑

d∈D

(td − od)2

D

▽ E[W] = [ dE
dw0

,
dE
dw1

, . . . ,
dE
dwn

]

Δwi = − η
dE
dwi

!15



Perceptron Gradient Descent

• Exercise: Derive gradient descents for


• Activation: identity


• Activation: sigmoid

dE
dwi

= ∑
d

(td − od)(−xi,d)

dE
dwi

= ∑
d

(td − od)od(1 − od)(−xi,d)

!16



Perceptron Gradient Descent
1. Initialize each       to some small random value


2. Until convergence do


1. Initialize each          to zero


2. for each example in training data do


1. input the example     and compute output


2. for each linear unit weight      do


3. for each linear unit weight       do


wi

Δwi

x

wi

Δwi ← Δwi + η
dE
dwi

wi

wi ← wi + Δwi

o

Δwi ← Δwi + η(t − o)xi
Δwi ← Δwi + η(t − o)o(1 − o)xi

{ or

!17



Neural Networks
Neural Network: Connect perceptron (neurons) and make bigger 
structures 


1. Feed-forward NN (ANN)


2. Recurrent Neural Network (RNN)


3. Convolutional Neural Networks (CNN)


Key learning algorithm: Back Propagation (BP)


A recent work: Dosovitskiy, Alexey, et al. "Flownet: Learning optical 
flow with convolutional networks." In Proceedings of the IEEE 
International Conference on Computer Vision, pp. 2758-2766. 2015.

!18



ANN
1. Feed-forward NN (ANN): one-direction, fully-connected


1. Single-layer perceptron


2. Multi-layer perceptron (MLP)


3. Deep Neural Network (DNN)

Picture borrowed from https://people.cs.pitt.edu/~xianeizhang/notes/NN/NN.html
!19



RNN
2- Recurrent Neural Network (RNN)


• Directed cycles and delays


• Recognize pattern in time

Picture borrowed from http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/TrackingRNN.pdf
!20

http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/TrackingRNN.pdf


CNN
3- Convolutional Neural Networks (CNN)


• Not fully-connected. Connected in convolutions style


• Recognize pattern in space

Picture borrowed from http://www.stat.ucla.edu/~xianjie.chen/projects/pose_estimation/pose_estimation.html
!21



Exercise
Now let’s look at some examples

�22

These examples are borrowed from Dr. Vibhav Gogate’s Machine 
Learning class. (Fall 2014 Midterm and Spring 2012 Final)



Exercise 1

!23



Exercise 1 Solution

!24



Exercise 1 Solution

!25



Exercise 1 Solution

!26



Exercise 2

!27



Exercise 2 Solution

!28



Exercise 2 Solution

!29



Back Propagation 
1. Initialize all weights to some small random value


2. Until convergence do


1. for each example in training data do


1. input the example     and compute output


2. for each unit     do


3. for each hidden unit     do


5. Update each network weights 


wi,j ← wi,j + Δwi,j

x

k
δk ← ok(1 − ok)(tk − ok)

h

δh ← oh(1 − oh) ∑
u∈next_layer

wh,uδu

Δwi,j = ηδjoi,j

{{ for sigmoid. change for other functions

!30



Back Propagation in Action 

!31

x1 x2 x3

2 3

1

V12 V22 V23 V33

V21 V31

V02 V03

V01



Back Propagation in Action 

!32

x1 x2 x3

2 3

1

V12 V22 V23 V33

V21 V31

V02 V03

V01

o2 = σ(V02 + V12x1 + V22x2) o3 = σ(V03 + V23x2 + V33x3)

o1 = σ(V01 + V21o2 + V31o3)



Back Propagation in Action 

!33

x1 x2 x3

2 3

1

V12 V22 V23 V33

V21 V31

V02 V03

V01

δ2 = o2(1 − o2)δ1V21
δ3 = o3(1 − o3)δ1V31

δ1 = o1(1 − o1)(t − o1)



Back Propagation in Action 

!34

x1 x2 x3

2 3

1

V12 V22 V23 V33

V21 V31

V02 V03

V01

ΔV21 = η . δ1 . o2 ΔV31 = η . δ1 . o3

ΔV23 = η . δ3 . x2

ΔV33 = η . δ3 . x3

ΔV22 = η . δ2 . x2

ΔV12 = η . δ2 . x1



Exercise 3

!35



Exercise 3

!36



Exercise 3 Solution

!37



Exercise 3 Solution

!38



Exercise 3 Solution

!39


