(NS
\

letworks

Detalls and Examples

(Artificial) Neural

Computer Science
University of Texas at Dallas September, 2018
CS7301-003 Fall 2018

Ashkan Yousefpour

e |ntroduction

* Perceptron

e Activation Functions
» Exercise

e Training Rule

e Gradient Descent

e Exercise

o Artificial Neural networks

e Different Types

e Exercises

e Back propagation

e Exercise

Outline

Introduction

* Artificial Neural Networks (ANNSs) provide interesting alternatives of

solving variety of problems in different fields of science and
engineering

e Human brain

e Ultimate goal of a computer scientist is to create a computer
that could mimic human brain (e.g. biological neural network)

* ANNs are simplifications of Biological Neural Networks

 ANNSs have proven their applicability and importance by solving

complex problems (e.g. emergence of deep neural networks,
“deep learning”)

Motivation for this Lecture

By the end of this lecture,
we will be able to solve some concrete exercises like this one

Exercise 1

Draw a neural network that represents the function f(x,y) defined below:

|y | flzy)
0[]0 10
01| -5
10| -5
1|1

. YAY!

ANN Building Block

* The main component of ANN is perceptron
* ANN is a combination of many perceptrons, connected in a bigger network

* Perceptron with step activation function

—
— - >
_{1if.2wl.xl.>o
0= =D ¥ =

-1 otherwise

Picture borrowed from https://www.hlt.utdalIas.e5du/~vgogate/ml/201 8s/lectures/Perceptrons.pdf

Perceptron

e Usually in ANN, the linear unit (sum) and activation unit
are shown in one circle

Bias Weight

ao=-1 Wy, a;=g(in;)
Input Input Activation Output
Links Function Function Output Links

Picture borrowed from http://aima.eecséberkeley.edu/slides-pdf/chapterZOb.pdf

Perceptron Example

Spam Detection

3 features (frequency of words “money”, “lottery”, and
bias)

spam is “positive” class
Current weights (wy, Wy, wy) = (—3,4,2)

e Email is “win lottery money” -> spam
W.X=(ME3)+1)6)+(1)2)=5>0 spam!

[

Perceptron Activation Functions

e Activation functions:
e |dentity function
e Step function
e Sigmoid function (aka “logistic”)
e RelU function

e See https://en.wikipedia.org/wiki/Activation function

https://en.wikipedia.org/wiki/Activation_function

Perceptron implementable Functions

e Exercise: Implement NOT, AND, and OR using perceptron

e Linear functions can be implemented with perceptron (e.g. AND)

Wo=1.5 Wo= 05 Wy=-0.5
Wl}k Wl}k —-
/ / W, =-1
W2 = 1 W2 = 1
AND OR NOT

e Decision surface of perceptron is hyperplane (line in 2D)

)C2A sz

(a) (b)

Perceptron Training

 We found a perceptron for AND, OR, NOT

e How about bigger examples, e.qg. optical network
reconfiguration plan given 200 features?

* How can computer find the weights automatically?

10

Perceptron Training Rule

* Training rule:
Aw, = n(t — o)x;
w; — w, + Aw;
* 7] is learning rate (constant, e.g. 0.1)
e O Is the output of perceptron, including activation function

e istarget value (desired)

11

Perceptron Training Rule

* Perceptron training rule is great

* However, what happens if data is not linearly separable
 Goes back and forth
 Will not convergel!

* Need another training rule

 Gradient descent or gradient ascent

12

Gradient Descent

e Gradient descent

e Let’s think about error
(or loss) function [(W)

e Can we somehow get
to the minima?

wl w2

* Yes. Using gradient 1
[W]=E[W]=— z' (t;— 0,)°
v iw 2 &

13

Gradient Descent

e Gradient descent

25+

0
e Error function E(W) \\\\\\\\‘ ““‘\“:t:“:‘
e Start randomly from s \3“\\‘\“\‘\\‘\\‘%\‘\‘\\‘{\‘3“\‘\“‘:“‘“‘:}“
somewhere (in the E(W)
surface)

* Move downwards using
gradient (will see soon)

 Hopefully you get to global
minima
 Why not always?

Picture borrowed from https://www.hlt.utdalIas.1e2u/~vgogate/ml/201 8s/lectures/Perceptrons.pdf

Perceptron Gradient Descent

Gradient
Training rule
dE
Aw, = —np
dWi

Gradient descent

15

.....

Perceptron Gradient Descent

 EXxercise: Derive gradient descents for

e Activation: identity

W-Z(rd—odx X;)

e Activation: sigmoid

—_— = Z (td — Od)Od(l — Od)(_xi,d)
d

16

Perceptron Gradient Descent

1. Initialize each W; to some small random value
2. Until convergence do
1. Initialize each Aw, to zero
2. for each example in training data do
1. Input the example X and compute output O

2. for each linear unit weight W; do

Awi <« Awi ~+ 77_
dw; Aw; < Aw, +n(t — o)o(1 — o)x;

l

3. for each linear unit weight w; do

17

Neural Networks

Neural Network: Connect perceptron (neurons) and make bigger
structures

1. Feed-forward NN (ANN)

2. Recurrent Neural Network (RNN)

3. Convolutional Neural Networks (CNN)

Key learning algorithm: Back Propagation (BP)

A recent work: Dosovitskiy, Alexey, et al. "Flownet: Learning optical
flow with convolutional networks." In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2758-2766. 2015.

18

ANN

1. Feed-forward NN (ANN): one-direction, fully-connected

1. Single-layer perceptron
2. Multi-layer perceptron (MLP)

3. Deep Neural Network (DNN)

hidden layers

input layer ¢

Picture borrowed from https://people.cs1.Bitt.edu/~xianeizhang/notes/NN/NN.html

RNN

2- Recurrent Neural Network (RNN)
* Directed cycles and delays

 Recognize pattern in time

(==

Food

N =

Non-linear Merge

—

— Add
Weather

Picture borrowed from http://cseweb.ucsd.edu/~mkchandrg(l)(er/classes/CSE291/\Ninter201 8/Lectures/TrackingRNN.pdf

http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/TrackingRNN.pdf

CNN

3- Convolutional Neural Networks (CNN)
e Not fully-connected. Connected in convolutions style

 Recognize pattern in space

> ® 128 128 128 128
6, 32

3 4096 4096 | §\

Picture borrowed from http://www.stat.ucla.edu/~xiang?.chen/projects/pose_estimation/pose_estimation.htmI

Exercise

Now let’s look at some examples

These examples are borrowed from Dr. Vibhav Gogate’s Machine
Learning class. (Fall 2014 Midterm and Spring 2012 Final)

22

Exercise 1

Draw a neural network that represents the function f(x,y) defined below:

|y | flzy)
00 10
01| -5
10| -5
11| 10

23

Exercise 1 Solution

Exercise 1 Solution

Nodes labeled by 1 and 2 are simple threshold units while the node labeled by 3 is a linear
unit.

A possible setting of the weights is given below. Recall that the simple threshold unit is
given by:

out = { —1 otherwise

01, which is the output of node labeled by 1 implements the following function

o +1 if ~z A -y is true
L7 -1 otherwise

To achieve this, we can use wg = 1 and w; = wy = —2

25

Exercise 1 Solution

02, which is the output of node labeled by 2 implements the following function

o +1 ifx Ay is true
271 —1 otherwise
To achieve this, we can use vg = —2 and v = v9 = 1.5.

o3 implements the following function

o +10 if oy = +1 or o9 = +1
ST =5 otherwise

Note that since 3 is a linear unit, we need it to obey the following constraints:
So+ s1 — s9 = 10 (ifOl = +1 and o9 :—1)
sg— 81+ s2 =10 (if o1 = —1 and oy = +1)
sog— 81— S =—5 (if oy = —1 and 0y = —1)

Notice that the case oy = +1 and o9 = +1 can never happen.

A solution to the three equations is sy = 10 and s; = s9 = 7.5.
26

Exercise 2

(5 points) Consider the data set given above. Assume that the co-ordinates of the points
are (1,1), (1,-1), (-1,1) and (-1,-1). Draw a neural network that will have zero training

error on this dataset. (Hint: you will need exactly one hidden layer and two hidden

nodes).

27

Exercise 2 Solution

Solution: There are many possible solutions to this problem. I describe one way
below. Notice that the dataset is not linearly separable. Therefore, we will need at
least two hidden units. Intuitively, each hidden unit will represent a line that classifies
one of the squares (or crosses) correctly but mis-classifies the other. The output unit
will resolve the disagreement between the two hidden units. I am assuming that the
symbol X is positive and the other symbol implies negative class.

28

Exercise 2 Solution

>¢(x17 332)

All hidden and output units are simple threshold units (aka sign units). Recall that
each sign unit will output a +1 if woxg + w121 + ... 4+ wpx, > 0 and —1 otherwise.

29

Back Propagation

1. Initialize all weights to some small random value
2. Until convergence do
1. for each example in training data do
1. input the example X and compute output
2. for each unit k do
O, < o(1 — o)(t, — 0p)

3. for each hidden unit 2do for sigmoid. change for other functions

Gieol=0)) W,

5. Update each network weights u€next_layer

Wi < Wi+ Aw;; Aw; ; = 10,0; ;

30

Back Propagation in Action

Back Propagation in Action

0, = G(V()l + V2102 + V3103) I

32

Back Propagation in Action

o))t = 0y) '

Back Propagation in Action

34

Exercise 3

Run the Back Propagation algorithm on the following neural network.

35

Exercise 3

Assume that all internal nodes compute the sigmoid function. Write an explicit expression that
shows how back propagation (applied to minimize the least squares error function) changes the
values of wy, ws, w3, wy and ws when the algorithm is given the example z1 = 0, x9 = 1, with
the desired response y; = 0 and y2 = 1 (29 = 1 is the bias term). Assume that the learning
rate is « and that the current values of the weights are: w; = 3, wy = 2, w3 = 2, wy = 3 alnd
ws = 2. Let O; and Oy be the output of the output units 1 (which models y;) and 2 (which
models y9) respectively . Let O3 be the output of the hidden unit 3.

01 02

Exercise 3 Solution

(5 points) Forward propagation. Write equations for O, Oy and O3 in terms of the given
weights and example.

Solution: O3 = o(wixg + wexy + w3xe) =0(3%x14+2%x0+2%1) = o (5)
Oy = o(ws03) = 0(20(5))
O1 = o(wy03) = 0(30(5))

01 02

37

Exercise 3 Solution

(5 points) Backward propagation. Write equations for 4y, d2 and d3 in terms of the given
weights and example where 01, 0o and 03 are the values propagated backwards by the units
denoted by 1 and 2 and 3 respectively in the neural network.

Solution: 6, = (y1 — 01)o1(1 —01) = 0? — 0%

b2 = (y2 — 02)02(1 — 02) = 02(1 — 02)?
53 — 03(1 — 03)(w451 + w552) — 03(1 — 03)(351 + 252)

38

Exercise 3 Solution

(5 points) Give an explicit expression for the new (updated) weights wy, we, w3, wy and ws
after backward propagation.

Solution: Let 7 denote the learning rate
w1 = w1 +nd3xrg =3 +no3 X 1 =3+ nds
wo = w9 +Nd3xr1 =2+ no3 X 0 =2

w3 = w3z +Nd3xre = 2+ nd3 X 1 =2 + nd3
wy = wyg + nd103 = 3 + No103

w5 = Wy + Nd203 = 2 + Nd203

39

